✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
在狭窄的空间环境中,例如建筑物内部或城市峡谷,多架无人机的编队控制是一个具有挑战性的任务。本文提出了一种用于在狭窄空间环境中自重构 V 形编队的新方法。该方法基于分布式模型预测控制 (DMPC) 算法,它考虑了无人机之间的通信和碰撞避免约束。仿真结果表明,所提出的方法能够在狭窄的空间环境中实现多架无人机的自重构 V 形编队,同时保证安全性和效率。
引言:
无人机编队控制在各种应用中具有重要意义,例如协作任务、监视和探索。在狭窄的空间环境中,例如建筑物内部或城市峡谷,编队控制变得更加具有挑战性,因为无人机必须在有限的空间内协同工作,同时避免碰撞。
方法:
所提出的方法基于分布式模型预测控制 (DMPC) 算法。DMPC 是一种预测控制技术,它使用模型来预测系统在未来一段时间内的行为。然后,它使用这些预测来计算控制输入,以优化系统的性能。
在所提出的方法中,DMPC 算法用于控制每架无人机的运动。每个无人机都有一个局部模型,该模型预测了其自身和邻近无人机的运动。局部模型用于计算控制输入,以优化编队的性能,同时考虑通信和碰撞避免约束。
仿真结果:
所提出的方法在 MATLAB/Simulink 中进行了仿真。仿真结果表明,该方法能够在狭窄的空间环境中实现多架无人机的自重构 V 形编队。无人机能够在狭窄的空间内协同工作,同时避免碰撞。
结论:
本文提出了一种用于在狭窄空间环境中自重构 V 形编队的新方法。该方法基于分布式模型预测控制 (DMPC) 算法,它考虑了无人机之间的通信和碰撞避免约束。仿真结果表明,所提出的方法能够在狭窄的空间环境中实现多架无人机的自重构 V 形编队,同时保证安全性和效率。保持 V 形队形。
结论:
本文提出了一种用于在狭窄空间环境中自重构 V 形编队的算法。该算法基于分布式 MPC 方法,并采用了一种基于 Lyapunov 的方法来确保编队的稳定性。仿真结果表明,该算法能够在狭窄空间环境中有效地自重构 V 形编队,并具有较强的鲁棒性和适应性。
📣 部分代码
function model = CreateModel2()
%CREATEMODEL
%% Formation description
d = 0.8; % The desired distance
alpha = 3*pi/4; % The desired angle
n = 5; % Number of drone
%% Start and Goal
start = [-20.0 3.5];
goal = [22.0 3.5];
%% Obstacles set
obs1 = [-10.0 0.0; -10.0 1.0; 0.0 3.15; 15.0 3.15; 20.0 0.0];
obs2 = [-10.0 7.0; -10.0 6.0; 10.0 3.85; 15.0 3.85; 20.0 7.0];
%% Limit
xmax = 22.0;
xmin = -24.0;
ymax = 7.0;
ymin = 0.0;
%% Scenario
model.d = d;
model.alpha = alpha;
model.n = n;
model.start = start;
model.goal = goal;
model.obstacles = {obs1, obs2};
model.xmax = xmax;
model.xmin = xmin;
model.ymax = ymax;
model.ymin = ymin;
end
⛳️ 运行结果
🔗 参考文献
Duy Nam Bui and Manh Duong Phung and Hung Pham Duy, "Self-Reconfigurable V-shape Formation of Multiple UAVs in Narrow Space Environments," The 2024 16th IEEE/SICE International Symposium on System Integration (SII 2024), Ha Long, Vietnam, 2024.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类