✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
**电磁波的角动量在概念和应用中都非常重要。在这项工作中,我们系统地讨论了两种类型的角动量,即自旋角动量和轨道角动量在各种情况下的情况,例如有源和无源,经典和量子形式。还给出了数值结果,演示了如何通过光谱法提取经典涡旋光束的拓扑电荷。**基本而重要的概念,它描述了物体绕轴旋转的趋势。电磁波也具有角动量,这在概念和应用中都至关重要。
自旋角动量
自旋角动量是电磁波固有的性质,与波的偏振状态有关。对于线性偏振波,自旋角动量为零。对于圆偏振波,自旋角动量为非零,其方向取决于偏振方向。
轨道角动量
轨道角动量是电磁波由于其波前相位分布而获得的角动量。当波前呈螺旋状时,就会产生轨道角动量。轨道角动量的拓扑电荷表征了螺旋的缠绕程度。
有源和无源电磁波
有源电磁波是由天线或其他辐射源产生的,而无源电磁波则是在介质中传播的波。有源电磁波同时具有自旋和轨道角动量,而无源电磁波通常只有轨道角动量。
经典和量子电磁波
在经典电磁学中,电磁波被视为连续的波场。在量子力学中,电磁波被视为由光子组成的离散粒子。经典角动量和量子角动量之间存在着联系,但也有着重要的区别。
应用
电磁波的角动量在许多应用中发挥着至关重要的作用,包括:
-
光学镊子:使用光束的轨道角动量来操纵微小粒子。
-
量子计算:利用光子的自旋角动量来实现量子比特。
-
通信:利用轨道角动量来增加通信信道的容量。
数值模拟
我们使用频谱法对经典涡旋光束的拓扑电荷进行了数值模拟。该方法基于对波前相位分布进行傅里叶变换,并分析变换后的频谱。
结论
电磁波的角动量是概念和应用中至关重要的一个方面。我们系统地讨论了自旋角动量和轨道角动量,并给出了数值结果来演示如何提取涡旋光束的拓扑电荷。电磁波角动量在光学、量子信息和通信等领域有着广泛的应用前景。
📣 部分代码
clc;clear
%% configuration
wavelength=1; % ***wavelength
k0=2*pi/wavelength; % wavenumber
Z=120*pi; % wave impedance
Volume=1;
%an=(Volume/(pi*4/3)).^(1/3);
TL=2; % Topological charge ***
%% number and position of source points
N=12; % *** number of point sources
% radius and angle
radius= 0.5; % *** radius
theta=linspace(0,2*pi-2*pi/(N),N);
[x00,y00]=pol2cart(theta,radius);
%% sampling the observation area xoy plane
% z direction slices
delta=0.4; % step ***
⛳️ 运行结果
🔗 参考文献
-
Wei E.I. Sha, Zhihao Lan, Menglin L.N. Chen, Yongpin P. Chen, and Sheng Sun, “Spin and Orbital Angular Momenta of Electromagnetic Waves: From Classical to Quantum Forms,” IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 9, pp. 113-117, Mar. 2024.
-
Ling-Jun Yang, Sheng Sun, and Wei E.I. Sha, “Manipulation of Orbital Angular Momentum Spectrum Using Shape-Tailored Metasurfaces,” Advanced Optical Materials, vol. 9, pp. 2001711, Jan. 2021.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类