✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
电力线通信 (PLC) 系统中的信道估计对于可靠的数据传输至关重要。本文介绍了三种广泛用于 PLC 信道估计的算法:最小二乘 (LS)、最小均方误差 (MMSE) 和奇异值分解 (SVD)。这些算法的原理、优点和缺点进行了详细的讨论。本文还提供了仿真结果,以比较这些算法在不同信道条件下的性能。
引言
PLC 系统利用现有的电力线基础设施进行数据传输。由于电力线固有的噪声和衰减特性,信道估计对于补偿信道失真和提高通信性能至关重要。信道估计算法旨在估计信道的频率响应,以便在数据传输过程中进行均衡和干扰消除。
LS 算法
LS 算法是信道估计中最简单的算法之一。它通过最小化接收信号与估计信道响应卷积后的误差来估计信道。LS 算法的计算复杂度低,但它对噪声和干扰敏感。
MMSE 算法
MMSE 算法是一种基于统计的方法,它通过最小化接收信号与估计信道响应卷积后的均方误差来估计信道。与 LS 算法相比,MMSE 算法对噪声和干扰更鲁棒。然而,它的计算复杂度更高。
SVD 算法
SVD 算法是一种基于矩阵分解的方法,它通过对接收信号的协方差矩阵进行奇异值分解来估计信道。SVD 算法能够估计多径信道,并且对噪声和干扰具有鲁棒性。然而,它的计算复杂度最高。
仿真结果
为了比较这些算法的性能,我们进行了仿真。仿真中,我们使用了一个具有不同噪声水平和路径损耗的多径信道模型。仿真结果表明:
-
在低噪声条件下,LS 算法和 MMSE 算法的性能相似。
-
在高噪声条件下,MMSE 算法优于 LS 算法。
-
SVD 算法在所有噪声水平下都表现出最佳性能。
结论
本文介绍了三种用于 PLC 信道估计的算法:LS、MMSE 和 SVD。这些算法各有其优点和缺点。在低噪声条件下,LS 算法可以提供良好的性能。在高噪声条件下,MMSE 算法更鲁棒。SVD 算法在所有噪声水平下都表现出最佳性能,但计算复杂度最高。根据 PLC 系统的特定要求,可以根据性能和计算复杂度的权衡来选择合适的信道估计算法。
📣 部分代码
%LMMSE算法函數
function output=lmmse_estimation(input,pilot_inter,pilot_sequence,pilot_num,trms,t_max,snr);
beta=17/9;
[N,NL]=size(input);
Rhh=zeros(N,N);
for k=1:N
for l=1:N
Rhh(k,l)=(1-exp((-1)*t_max*((1/trms)+j*2*pi*(k-l)/N)))./(trms*(1-exp((-1)*t_max/trms))*((1/trms)+j*2*pi*(k-l)/N));
end
end
output=zeros(N,NL-pilot_num);
i=1;
count=0;
while i<=NL
Hi=input(:,i)./pilot_sequence;
Hlmmse=Rhh*inv(Rhh+(beta/snr)*eye(N))*Hi;
count=count+1;
if count*pilot_inter<=(NL-pilot_num)
for p=((count-1)*pilot_inter+1):count*pilot_inter
output(:,p)=input(:,(i+p-(count-1)*pilot_inter))./Hlmmse;
end
else
for p=((count-1)*pilot_inter+1):(NL-pilot_num)
output(:,p)=input(:,(i+p-(count-1)*pilot_inter))./Hlmmse;
end
end
i=i+pilot_inter+1;
end
⛳️ 运行结果
🔗 参考文献
[1] 王凯莉.基于SDR平台的窄带物联网系统信道估计的研究与实现[D].上海师范大学[2024-03-28].DOI:CNKI:CDMD:2.1018.211030.
[2] 赵黎,李豪杰.FSO-OFDM系统的SVD-MMSE信道估计算法[J].西安工业大学学报, 2011, 31(5):474-477.
[3] 刘佳生.基于OFDM的电力线通信系统信号同步与信道估计的研究[D].哈尔滨工业大学[2024-03-28].DOI:CNKI:CDMD:2.1017.739823.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类