✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
车辆路径问题(VRP)是物流和运输领域中的一个经典优化问题。本文提出了一种基于非支配排序遗传算法 II(NSGA-II)的多目标优化算法,用于解决带时间窗的车辆路径问题(VRPTW)。该算法同时考虑了车辆路径满意度和最小距离两个目标,旨在提高客户满意度和降低运输成本。
问题描述
VRPTW问题涉及将一组车辆分配给一组客户,以满足以下约束条件:
-
每辆车从一个仓库出发并返回。
-
每辆车必须在指定的时间窗内拜访所有客户。
-
每辆车的载重量不能超过其容量。
多目标优化模型
本文提出的多目标优化模型同时考虑了以下两个目标:
-
**车辆路径满意度:**衡量客户对车辆路径安排的满意程度,目标是最大化满意度。
-
**最小距离:**衡量车辆行驶的总距离,目标是最小化距离。
NSGA-II算法
NSGA-II算法是一种多目标优化算法,通过以下步骤进行优化:
-
**初始化种群:**随机生成一组可行解作为初始种群。
-
**非支配排序:**根据两个目标值,将种群中的个体进行非支配排序。
-
**拥挤距离计算:**计算每个个体在非支配排序中的拥挤距离。
-
**选择:**根据非支配排序和拥挤距离,选择下一代的个体。
-
**交叉和变异:**对选出的个体进行交叉和变异操作,产生新的个体。
-
**重复步骤2-5:**重复上述步骤,直到达到终止条件。
算法实现
本文将NSGA-II算法应用于VRPTW问题,并进行了以下实现:
-
使用Clarke-Wright算法进行初始解生成。
-
定义了基于客户等待时间和车辆超载惩罚的车辆路径满意度函数。
-
使用2-Opt和Or-Opt局部搜索算法进行优化。
本文提出了一种基于NSGA-II的多目标优化算法,用于解决带时间窗的车辆路径问题。该算法同时考虑了车辆路径满意度和最小距离两个目标,并通过实验验证了其有效性。该算法可以应用于物流和运输领域,以提高客户满意度和降低运输成本。
📣 部分代码
clc
clear
close all
format compact;
tic
hold on
%% 输入参数
global Ck Cij Sk ts Penalty
Ck = 2; %元
Cij = 0.02; %元/米
Sk = 30; %km/h
ts = 8; %min
Penalty = [3, 5, 8];%元
global Qmax Qclient Time
Qmax = 5;
timeW = xlsread('参数数据(1).xlsx','sheet1');
Qclient = timeW(:, 2);
Time = timeW(:, 3:7);
global Distance Distance2
Distance = xlsread('参数数据(1).xlsx', 'sheet2');
Distance2 = xlsread('参数数据(1).xlsx', 'sheet3');
global numclient
numclient = length(Distance(2:end,1)); %配送中心数
Distance = Distance(2:end, 2:end);
%---初始化/参数设定
⛳️ 运行结果
🔗 参考文献
[1]徐贺灿,朱树人.Pareto遗传算法求解多目标带时间窗车辆路径问题[J].物流技术, 2015, 34(16):4.DOI:10.3969/j.issn.1005-152X.2015.08(2).046.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类