✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
无线传感器网络(WSN)是一种由大量低功耗、低成本的传感器节点组成的网络,用于收集和传输环境数据。由于传感器节点的能量有限,因此在WSN中路由优化至关重要,以最大限度地延长网络寿命。本文提出了一种基于蚁群算法(ACO)的WSN路由优化算法,旨在找到节点消耗能量最低的路由路径。
引言
WSN在环境监测、工业自动化和医疗保健等领域有着广泛的应用。然而,传感器节点的能量有限,因此路由优化对于延长网络寿命至关重要。传统的路由算法,如最短路径算法,并不考虑节点的能量消耗。
蚁群算法
蚁群算法是一种启发式算法,灵感来自蚂蚁寻找食物的集体行为。在ACO中,蚂蚁在解决空间中寻找最短路径的问题时,通过释放信息素来相互交流。信息素浓度高的路径更有可能被蚂蚁选择。
基于ACO的WSN路由优化算法
本文提出的基于ACO的WSN路由优化算法包括以下步骤:
-
**初始化:**初始化蚂蚁种群,并为每个蚂蚁分配一个起始节点。
-
**路径构建:**每个蚂蚁根据信息素浓度和启发式函数选择下一个节点,直到到达目标节点。
-
**信息素更新:**蚂蚁完成路径构建后,会更新路径上节点的信息素浓度。消耗能量较少的路径将获得更高的信息素浓度。
-
**蒸发:**信息素会随着时间的推移而蒸发,以防止算法陷入局部最优。
-
**终止:**当满足终止条件(例如达到最大迭代次数或找到最优路径)时,算法终止。
仿真结果
本文将提出的算法与其他路由算法(如最短路径算法和最小跳数算法)进行了仿真比较。仿真结果表明,基于ACO的算法在节点消耗能量方面具有显着的优势。
结论
本文提出了一种基于蚁群算法的WSN路由优化算法,旨在找到节点消耗能量最低的路由路径。仿真结果表明,该算法在延长网络寿命方面具有良好的性能。未来,该算法可以进一步优化,以适应更复杂的WSN场景。
📣 部分代码
C0=0.2;
f=5;
K=100; %迭代次数(指蚂蚁出动多少波)
c2=2;
d0=1;
dead=0;
Alpha=1.5;
Gamma=1;
Beta=0.5;Rho=0.6;Q=10.^4;
N=size(C,1);
D=ones(N,N);
Length_best=ones(K,1);
Routh_best=cell(K,1);
Best_path=cell(K,1);
Best_length=ones(K,1);
Length_average=ones(K,1);
for i=1:N
for j=1:N
if i < j
D(i,j)=sqrt((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2);
end
D(j,i)=D(i,j);
end
end
D_average=mean(D);
R_max=D_average;
rand('state',5) %rand('state',0)作用在于如果指定状态,产生随机结果相同
E=ones(N,1);
E1=zeros(N,1);
E2=zeros(N,1);
E3=ones(N,1);
kd=2000;
Eelec=50*10.^-9; %接收能量损耗
Eamp=100*10.^-12; %传输损耗系数
Tau = ones(N,N);
Routes=cell(K,M);%%用细胞结构存储每一代的每一只蚂蚁的爬行路线
PL=zeros(K,M); %用矩阵存储每一代的每一只蚂蚁的爬行路线长度
dead_first_flag=0;
⛳️ 运行结果
🔗 参考文献
[1]唐军.目标跟踪WMSN的定位方法与动态分簇研究[D].浙江大学,2009.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类