【LEACH协议】基于粒子群算法能量均衡高效WSN的PSO-LEACH协议附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

【LEACH 协议】基于粒子群算法能量均衡高效 WSN 的 PSO-LEACH 协议

摘要

无线传感器网络(WSN)在各种应用中发挥着至关重要的作用,但其能量受限的特性限制了其使用寿命。低能量自适应群集层次(LEACH)协议是一种广泛使用的能量均衡协议,但它存在群集头能量消耗不均衡的问题。为了解决这一问题,本文提出了一种基于粒子群算法(PSO)的改进 LEACH 协议(PSO-LEACH)。PSO-LEACH 利用 PSO 算法优化群集头选择过程,从而实现更均衡的能量消耗和更长的网络寿命。

引言

WSN 由大量分布式、低功耗传感器节点组成,用于收集和传输数据。由于传感器节点的能量受限,延长 WSN 的使用寿命至关重要。LEACH 协议通过轮流选择群集头来实现能量均衡,但传统的 LEACH 协议存在群集头能量消耗不均衡的问题。

PSO-LEACH 协议

PSO-LEACH 协议在传统的 LEACH 协议的基础上进行了改进,引入 PSO 算法优化群集头选择过程。PSO 算法是一种基于群体智能的优化算法,它模拟鸟群或鱼群的觅食行为。在 PSO-LEACH 协议中,每个传感器节点被视为一个粒子,其位置表示为群集头选择概率。

PSO 算法通过迭代更新粒子的位置来寻找最优解。在每次迭代中,每个粒子根据其当前位置、最佳个人位置和全局最佳位置更新其速度和位置。群集头选择概率根据粒子的位置进行计算,概率较高的节点更有可能被选为群集头。

性能分析

通过仿真实验,我们评估了 PSO-LEACH 协议与传统 LEACH 协议的性能。仿真结果表明,PSO-LEACH 协议在以下方面具有明显优势:

  • **能量均衡性:**PSO-LEACH 协议通过优化群集头选择过程,实现了更均衡的能量消耗。这延长了网络的整体使用寿命。

  • **网络寿命:**由于能量消耗更均衡,PSO-LEACH 协议延长了网络的寿命。

  • **吞吐量:**PSO-LEACH 协议通过优化群集头选择,提高了网络的吞吐量。

结论

PSO-LEACH 协议是一种基于 PSO 算法的改进 LEACH 协议,它有效地解决了传统 LEACH 协议中群集头能量消耗不均衡的问题。通过优化群集头选择过程,PSO-LEACH 协议实现了更均衡的能量消耗、更长的网络寿命和更高的吞吐量。该协议为延长 WSN 的使用寿命和提高其性能提供了有效的解决方案。

📣 部分代码

clc%clearclose allformat shortG%%  Insert Datadata=InsertData();%% Parameters Settingnvar=data.N;           % Number of  Variableslb.x=0*ones(1,nvar);    % Lower Boundub.x=1*ones(1,nvar);    % Upper Boundlb.v=-0.8;             % Lower Bound of Velocityub.v= 0.8;             % Upper Bound of VelocityW=1;                % Inertia WeightW_RF=0.97;          % Inertia Weight Reduction factorC1=2;               % Personal Best Learning CoefficientC2=2;               % Global Best Learning CoefficientNpar=20;       % Population SizeMaxiter=50;   % Max Iterationdata.Npar=Npar;data.lb=lb;data.ub=ub;%% Initial Populationtic[par,emp]=CreateInitialPopulation(data);bpar=par; % Best Particle[~,ind]=min([par.fit]);gpar=par(ind); % Global Particle%% Main Loop BEST=zeros(Maxiter,1);MEAN=zeros(Maxiter,1);for iter=1:Maxiter            for i=1:Npar                % Update Velocity        par(i).v=W*par(i).v+...            C1*rand(1,nvar).*(bpar(i).x-par(i).x)+...            C2*rand(1,nvar).*(gpar.x-par(i).x);                        par(i).v=CB(par(i).v,lb.v,ub.v); % Check Bound                                        % Update Position        par(i).x=par(i).x+par(i).v;                                % Cal Fitness        par(i)=fitness1(par(i),data);                        % Update gpar and bpar                if par(i).fit<bpar(i).fit            bpar(i)=par(i);                        if par(i).fit<gpar.fit                gpar=par(i);            end        end                            end                    BEST(iter)=gpar.fit;    MEAN(iter)=mean([bpar.fit]);    target=gpar.x;            disp([ 'Iter = ' num2str(iter) ' BEST = ' num2str(BEST(iter))])            W=W*W_RF;          % Plot Best Solution  PlotBestSol(gpar,data,iter)       end%% Results%x=gpar.x;%[~,x]=sort(x);%x=[x x(1)];%disp([ ' Best Solution = ' num2str(x) ])%disp([ ' Best Fitness = ' num2str(gpar.fit) ])%disp([ ' Time = ' num2str(toc) ])%figure(1)%plot(x,'r')%hold on%semilogy(MEAN,'b')%xlabel('Iteration ')%ylabel(' Fitness ')%legend('BEST')%title('PSO')

⛳️ 运行结果

🔗 参考文献

[1]黄利晓,王晖,袁利永,et al.基于能量均衡高效WSN的LEACH协议改进算法[J].通信学报, 2017(S2):6.DOI:CNKI:SUN:TXXB.0.2017-S2-021.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值