✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
【LEACH 协议】基于粒子群算法能量均衡高效 WSN 的 PSO-LEACH 协议
摘要
无线传感器网络(WSN)在各种应用中发挥着至关重要的作用,但其能量受限的特性限制了其使用寿命。低能量自适应群集层次(LEACH)协议是一种广泛使用的能量均衡协议,但它存在群集头能量消耗不均衡的问题。为了解决这一问题,本文提出了一种基于粒子群算法(PSO)的改进 LEACH 协议(PSO-LEACH)。PSO-LEACH 利用 PSO 算法优化群集头选择过程,从而实现更均衡的能量消耗和更长的网络寿命。
引言
WSN 由大量分布式、低功耗传感器节点组成,用于收集和传输数据。由于传感器节点的能量受限,延长 WSN 的使用寿命至关重要。LEACH 协议通过轮流选择群集头来实现能量均衡,但传统的 LEACH 协议存在群集头能量消耗不均衡的问题。
PSO-LEACH 协议
PSO-LEACH 协议在传统的 LEACH 协议的基础上进行了改进,引入 PSO 算法优化群集头选择过程。PSO 算法是一种基于群体智能的优化算法,它模拟鸟群或鱼群的觅食行为。在 PSO-LEACH 协议中,每个传感器节点被视为一个粒子,其位置表示为群集头选择概率。
PSO 算法通过迭代更新粒子的位置来寻找最优解。在每次迭代中,每个粒子根据其当前位置、最佳个人位置和全局最佳位置更新其速度和位置。群集头选择概率根据粒子的位置进行计算,概率较高的节点更有可能被选为群集头。
性能分析
通过仿真实验,我们评估了 PSO-LEACH 协议与传统 LEACH 协议的性能。仿真结果表明,PSO-LEACH 协议在以下方面具有明显优势:
-
**能量均衡性:**PSO-LEACH 协议通过优化群集头选择过程,实现了更均衡的能量消耗。这延长了网络的整体使用寿命。
-
**网络寿命:**由于能量消耗更均衡,PSO-LEACH 协议延长了网络的寿命。
-
**吞吐量:**PSO-LEACH 协议通过优化群集头选择,提高了网络的吞吐量。
结论
PSO-LEACH 协议是一种基于 PSO 算法的改进 LEACH 协议,它有效地解决了传统 LEACH 协议中群集头能量消耗不均衡的问题。通过优化群集头选择过程,PSO-LEACH 协议实现了更均衡的能量消耗、更长的网络寿命和更高的吞吐量。该协议为延长 WSN 的使用寿命和提高其性能提供了有效的解决方案。
📣 部分代码
clc
%clear
close all
format shortG
%% Insert Data
data=InsertData();
%% Parameters Setting
nvar=data.N; % Number of Variables
lb.x=0*ones(1,nvar); % Lower Bound
ub.x=1*ones(1,nvar); % Upper Bound
lb.v=-0.8; % Lower Bound of Velocity
ub.v= 0.8; % Upper Bound of Velocity
W=1; % Inertia Weight
W_RF=0.97; % Inertia Weight Reduction factor
C1=2; % Personal Best Learning Coefficient
C2=2; % Global Best Learning Coefficient
Npar=20; % Population Size
Maxiter=50; % Max Iteration
data.Npar=Npar;
data.lb=lb;
data.ub=ub;
%% Initial Population
tic
[par,emp]=CreateInitialPopulation(data);
bpar=par; % Best Particle
[~,ind]=min([par.fit]);
gpar=par(ind); % Global Particle
%% Main Loop
BEST=zeros(Maxiter,1);
MEAN=zeros(Maxiter,1);
for iter=1:Maxiter
for i=1:Npar
% Update Velocity
par(i).v=W*par(i).v+...
C1*rand(1,nvar).*(bpar(i).x-par(i).x)+...
C2*rand(1,nvar).*(gpar.x-par(i).x);
par(i).v=CB(par(i).v,lb.v,ub.v); % Check Bound
% Update Position
par(i).x=par(i).x+par(i).v;
% Cal Fitness
par(i)=fitness1(par(i),data);
% Update gpar and bpar
if par(i).fit<bpar(i).fit
bpar(i)=par(i);
if par(i).fit<gpar.fit
gpar=par(i);
end
end
end
BEST(iter)=gpar.fit;
MEAN(iter)=mean([bpar.fit]);
target=gpar.x;
disp([ 'Iter = ' num2str(iter) ' BEST = ' num2str(BEST(iter))])
W=W*W_RF;
% Plot Best Solution
PlotBestSol(gpar,data,iter)
end
%% Results
%x=gpar.x;
%[~,x]=sort(x);
%x=[x x(1)];
%disp([ ' Best Solution = ' num2str(x) ])
%disp([ ' Best Fitness = ' num2str(gpar.fit) ])
%disp([ ' Time = ' num2str(toc) ])
%figure(1)
%plot(x,'r')
%hold on
%semilogy(MEAN,'b')
%xlabel('Iteration ')
%ylabel(' Fitness ')
%legend('BEST')
%title('PSO')
⛳️ 运行结果
🔗 参考文献
[1]黄利晓,王晖,袁利永,et al.基于能量均衡高效WSN的LEACH协议改进算法[J].通信学报, 2017(S2):6.DOI:CNKI:SUN:TXXB.0.2017-S2-021.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类