✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着互联网技术的快速发展,数字图像信息的安全性变得越来越重要。图像加密技术作为一种重要的信息安全手段,在保护数字图像信息免遭非法访问和篡改方面发挥着至关重要的作用。近年来,基于混沌映射的图像加密技术得到了广泛的研究和应用,其中Arnold变换和广义Arnold变换因其良好的置乱特性而备受关注。
本文将详细介绍基于Arnold变换和广义Arnold变换的图像加密解密算法,并通过相关性分析、熵分析和直方图分析对算法的性能进行评估。
1. Arnold变换
Arnold变换是一种经典的二维线性变换,其表达式如下:
x' = (x + y) mod N
y' = (x + 2y) mod N
其中,(x, y) 为原始图像坐标,(x', y') 为变换后的坐标,N 为图像大小。
Arnold变换具有以下特点:
-
周期性: 对同一图像进行多次 Arnold 变换,最终会回到初始状态。
-
敏感性: 对初始图像进行微小的扰动,经过多次 Arnold 变换后,变换后的图像会发生巨大的变化。
2. 广义Arnold变换
广义Arnold变换是对Arnold变换的一种推广,其表达式如下:
x' = (ax + by) mod N
y' = (cx + dy) mod N
其中,a, b, c, d 为整数,满足 ad - bc = 1。
广义Arnold变换比Arnold变换更灵活,可以实现更复杂的图像置乱效果。
3. 基于Arnold变换和广义Arnold变换的图像加密算法
基于Arnold变换和广义Arnold变换的图像加密算法主要流程如下:
-
图像预处理: 对原始图像进行灰度化或色彩空间转换。
-
Arnold变换或广义Arnold变换: 对预处理后的图像进行多次Arnold变换或广义Arnold变换。
-
密钥生成: 生成加密密钥,例如随机数种子、变换次数等。
-
加密: 使用密钥对置乱后的图像进行加密,例如采用简单的异或运算或其他加密算法。
解密流程则为加密流程的逆过程。
4. 性能分析
为了评估算法的性能,本文采用以下指标进行分析:
-
相关性分析: 计算加密前后图像像素之间的相关系数,以衡量加密算法的置乱效果。
-
熵分析: 计算加密后图像的熵值,以衡量加密图像的随机性。
-
直方图分析: 分析加密前后图像的直方图变化,以衡量加密算法的抗攻击能力。
5. 实验结果与分析
本文采用标准测试图像 Lena 和 Peppers 进行实验,并分别使用 Arnold 变换和广义Arnold变换进行加密。实验结果表明:
-
基于Arnold变换和广义Arnold变换的图像加密算法均能有效地实现图像置乱,加密后的图像相关性降低,熵值增大。
-
广义Arnold变换比Arnold变换更灵活,可以实现更复杂的置乱效果。
-
加密后的图像直方图分布均匀,能够有效地抵抗直方图攻击。
6. 结论
本文详细介绍了基于Arnold变换和广义Arnold变换的图像加密算法,并通过实验分析了算法的性能。实验结果表明,该算法能够有效地实现图像加密,具有良好的置乱效果和抗攻击能力。
⛳️ 运行结果
🔗 参考文献
[1] 刘丽.基于半像素交换置换的明文图像相关的混沌图像加密算法[D].汕头大学,2016.
[2] 郝磊.基于混沌理论的高分辨率数字图像加密算法及实现[D].山东建筑大学[2024-06-05].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类