✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要:风电功率预测是风电场安全稳定运行的关键环节。近年来,深度学习技术在风电功率预测领域取得了显著进展,但现有的模型仍然存在精度不足、泛化能力弱等问题。针对这些问题,本文提出了一种基于多策略混合改进哈里斯鹰算法优化卷积神经网络结合注意力机制的双向长短记忆网络 (HPHHO-CNN-BiLSTM-Attention) 的风电功率多输入单输出回归预测模型。该模型通过引入多策略混合改进哈里斯鹰算法 (HPHHO) 来优化卷积神经网络 (CNN) 的参数,有效提高了模型的特征提取能力。同时,结合双向长短记忆网络 (BiLSTM) 和注意力机制,充分利用时间序列数据中的时间相关性和重要特征信息,提升了模型对风电功率变化趋势的预测精度。实验结果表明,与其他主流模型相比,HPHHO-CNN-BiLSTM-Attention 模型在预测精度、泛化能力和稳定性方面均表现出显著优势。
关键词:风电功率预测,深度学习,卷积神经网络,双向长短记忆网络,注意力机制,哈里斯鹰算法
1. 引言
风能作为一种清洁可再生能源,在全球能源结构中扮演着越来越重要的角色。风电场的安全稳定运行对于保障能源供应和环境保护至关重要。风电功率预测是风电场运行控制的关键环节,准确的预测结果可以有效提高风电场的发电效率,降低弃风率,并为电网调度提供可靠依据。
近年来,深度学习技术凭借其强大的特征提取能力和非线性建模能力,在风电功率预测领域取得了显著进展。其中,卷积神经网络 (CNN) 能够有效提取时间序列数据中的空间特征,双向长短记忆网络 (BiLSTM) 能够有效捕获时间序列数据中的时间依赖关系。然而,现有的模型仍然存在一些问题:
-
特征提取能力不足: 传统的CNN模型在处理时间序列数据时,难以有效提取数据中的深层特征,导致预测精度有限。
-
时间相关性建模不足: 传统的LSTM模型仅考虑了单向的时间依赖关系,无法充分利用时间序列数据中的双向信息,限制了模型的预测能力。
-
模型参数优化问题: 深度学习模型的训练过程需要大量的参数调优,传统的优化算法效率低下,难以找到最佳模型参数。
2. 模型构建
针对上述问题,本文提出了一种基于多策略混合改进哈里斯鹰算法优化卷积神经网络结合注意力机制的双向长短记忆网络 (HPHHO-CNN-BiLSTM-Attention) 模型。该模型将以下几个关键技术融合在一起:
-
多策略混合改进哈里斯鹰算法 (HPHHO):该算法将哈里斯鹰算法 (HHO) 与多种策略结合,例如自适应权重策略、动态混沌策略、变异策略等,有效提升了算法的全局搜索能力和局部寻优能力,可以更有效地优化CNN模型的参数。
-
卷积神经网络 (CNN):CNN能够提取时间序列数据中的空间特征,例如风速、风向、气压等参数之间的相互关系,为后续的预测提供更丰富的特征信息。
-
双向长短记忆网络 (BiLSTM):BiLSTM能够有效地捕获时间序列数据中的双向时间依赖关系,例如历史风电功率数据对当前风电功率预测的影响,提升模型对风电功率变化趋势的预测精度。
-
注意力机制:注意力机制能够根据时间序列数据中的重要特征信息分配不同的权重,帮助模型聚焦于关键信息,进而提升预测精度。
3. 模型训练
HPHHO-CNN-BiLSTM-Attention 模型的训练过程包括以下几个步骤:
-
数据预处理: 对风电功率数据进行清洗、归一化等预处理,使其符合模型训练的要求。
-
特征提取: 使用CNN提取时间序列数据中的空间特征,例如风速、风向、气压等参数之间的相互关系。
-
时间序列建模: 使用BiLSTM对时间序列数据进行建模,捕获数据中的时间依赖关系。
-
注意力机制: 使用注意力机制对BiLSTM的输出结果进行加权,增强模型对重要特征信息的关注。
-
参数优化: 使用HPHHO算法优化CNN模型的参数,提升模型的特征提取能力。
-
模型训练: 使用训练数据集对模型进行训练,不断调整模型参数,使模型的预测误差最小化。
4. 实验结果与分析
为了验证HPHHO-CNN-BiLSTM-Attention 模型的有效性,本文选取了某风电场历史风电功率数据进行实验,并与其他主流模型进行比较,包括:
-
LSTM
-
CNN-LSTM
-
HHO-CNN-LSTM
实验结果表明,HPHHO-CNN-BiLSTM-Attention 模型在预测精度、泛化能力和稳定性方面均表现出显著优势。
-
预测精度方面: HPHHO-CNN-BiLSTM-Attention 模型的平均绝对误差 (MAE)、均方根误差 (RMSE) 和平均绝对百分比误差 (MAPE) 均低于其他模型,证明了该模型在预测精度方面的优越性。
-
泛化能力方面: HPHHO-CNN-BiLSTM-Attention 模型在测试集上的预测效果仍然优于其他模型,表明该模型具有更好的泛化能力。
-
稳定性方面: HPHHO-CNN-BiLSTM-Attention 模型的预测结果更加稳定,说明该模型对噪声和数据波动更加鲁棒。
5. 结论
本文提出了一种基于多策略混合改进哈里斯鹰算法优化卷积神经网络结合注意力机制的双向长短记忆网络 (HPHHO-CNN-BiLSTM-Attention) 的风电功率多输入单输出回归预测模型。该模型通过引入HPHHO算法、CNN、BiLSTM和注意力机制,有效提升了模型的特征提取能力、时间相关性建模能力和预测精度。实验结果表明,HPHHO-CNN-BiLSTM-Attention 模型在预测精度、泛化能力和稳定性方面均表现出显著优势,为风电功率预测提供了新的方法和思路。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类