✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
四旋翼无人机因其结构简单、机动性强、成本低廉等优势,在航拍、物流、农业、救援等领域得到广泛应用。然而,四旋翼无人机在飞行过程中容易受到外界扰动影响,导致姿态和轨迹发生偏差,影响飞行稳定性。传统PID控制器难以有效克服外界扰动和模型不确定性,导致控制精度和鲁棒性不足。为了解决这一问题,近年来滑模控制理论被广泛应用于四旋翼无人机的控制系统设计中。
滑模控制是一种非线性控制方法,具有对系统参数变化和外部干扰具有强鲁棒性等优点,能够有效提高控制系统的稳定性和抗干扰能力。然而,传统的滑模控制存在抖振问题,影响控制精度和系统性能。为了克服这一问题,本文提出了一种基于比例差动的低抖振滑模控制器,用于四旋翼无人机的姿态控制。
比例差动滑模控制方法
比例差动滑模控制方法是一种改进的滑模控制方法,它将传统的滑模控制与比例-微分 (PD) 控制相结合,有效地抑制了抖振问题,提高了系统性能。
3. 抖振抑制
比例差动滑模控制方法通过引入微分项 𝑠˙s˙,有效地抑制了抖振。微分项能够提前预测系统状态的变化趋势,并及时调整控制输入,减小控制信号的波动幅度。
4. 稳定性分析
为了保证控制系统的稳定性,需要进行稳定性分析。本文采用李雅普诺夫稳定性理论,通过构造李雅普诺夫函数,证明了比例差动滑模控制系统的全局渐进稳定性。
仿真结果与分析
为了验证比例差动滑模控制器的有效性,本文进行了仿真实验。仿真结果表明,比例差动滑模控制器能够有效地抑制抖振,提高控制精度和鲁棒性。与传统滑模控制器相比,比例差动滑模控制器的控制精度更高,系统响应更快,且对参数变化和外部干扰具有更强的鲁棒性。
结论
本文提出了一种基于比例差动的低抖振滑模控制器,用于四旋翼无人机的姿态控制。该控制器通过将滑模控制与PD控制相结合,有效地抑制了抖振问题,提高了控制精度和鲁棒性。仿真结果验证了该控制器的有效性,为四旋翼无人机的姿态控制提供了新的解决方案。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类