✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要:瓦斯涌出是煤矿安全生产的主要威胁之一,准确预测瓦斯浓度对于预防瓦斯灾害、保障矿工安全至关重要。本文提出一种基于阿基米德优化算法 (AOA) 优化宽度学习神经网络 (BLS) 的瓦斯浓度回归预测模型,旨在提高瓦斯浓度预测精度。首先,介绍了宽度学习神经网络的结构和原理,以及阿基米德优化算法的优化机制;然后,提出了基于AOA优化BLS的模型构建方法,并详细阐述了算法流程;最后,通过真实矿井瓦斯浓度数据进行实验验证,并将模型预测结果与其他算法进行对比,证明了本文模型的有效性和优越性。
1. 引言
瓦斯是煤矿生产过程中不可避免的伴生资源,其涌出是煤矿安全生产的主要威胁之一,甚至会引发瓦斯爆炸等重大安全事故,造成人员伤亡和财产损失。因此,准确预测瓦斯浓度对于预防瓦斯灾害、保障矿工安全具有重要意义。
传统的瓦斯预测方法主要依赖于经验模型和统计模型,如线性回归模型、多元回归模型等。然而,这些方法往往难以捕捉到复杂非线性关系,预测精度有限。近年来,随着人工智能技术的快速发展,神经网络模型逐渐被应用于瓦斯浓度预测领域,并取得了显著成果。然而,传统的BP神经网络存在训练速度慢、容易陷入局部最优等问题,难以满足实时预测的需求。
宽度学习神经网络 (BLS) 是一种新型的神经网络模型,具有结构简单、训练速度快、泛化能力强等优点,在非线性函数逼近和时间序列预测等领域展现出优异的性能。然而,BLS模型的预测精度也受限于其参数优化方法。为了进一步提高BLS模型的预测精度,本文提出将阿基米德优化算法 (AOA) 应用于BLS模型的参数优化,构建了一种基于AOA优化BLS的瓦斯浓度回归预测模型。
2. 宽度学习神经网络
2.1 结构与原理
宽度学习神经网络 (BLS) 是一种基于随机特征映射和线性组合的浅层神经网络模型。其结构主要包括输入层、增强层和输出层。
- 输入层:接收原始数据,并将其传递给增强层。
- 增强层:由多个随机特征节点组成,每个节点通过非线性函数对输入数据进行特征映射。
- 输出层:通过对增强层输出的特征进行线性组合来生成预测结果。
BLS模型的训练过程主要包括特征映射和线性组合两个步骤。首先,对输入数据进行随机特征映射,生成一系列增强节点;然后,通过最小二乘法求解输出层的权重,实现对目标变量的预测。
2.2 优势
BLS模型相比传统的BP神经网络,具有以下优势:
- 结构简单:BLS模型的结构简单,参数数量较少,便于理解和实现。
- 训练速度快:BLS模型采用线性组合的方式进行训练,训练速度远快于BP神经网络。
- 泛化能力强:BLS模型的随机特征映射可以有效地提取数据中的非线性特征,提高模型的泛化能力。
3. 阿基米德优化算法
3.1 算法原理
阿基米德优化算法 (AOA) 是一种新兴的元启发式优化算法,其灵感来源于阿基米德原理。AOA算法通过模拟阿基米德原理中的浮力效应来搜索最优解,并根据浮力的大小来更新候选解的位置。
3.2 算法流程
AOA算法的具体流程如下:
- 初始化种群,随机生成一组候选解。
- 计算每个候选解的适应度值,即目标函数值。
- 计算每个候选解的浮力值,根据浮力值对候选解进行排序。
- 更新候选解的位置,将浮力值较大的候选解向更优的方向移动。
- 重复步骤2-4,直到满足停止条件。
4. 基于AOA优化BLS的瓦斯浓度回归预测模型
4.1 模型构建方法
本文提出一种基于AOA优化BLS的瓦斯浓度回归预测模型,其构建方法如下:
- 数据预处理:对原始瓦斯浓度数据进行清洗、去噪、归一化等预处理操作。
- 特征工程:选择影响瓦斯浓度的关键特征,如工作面位置、采掘进度、地质构造等,作为模型的输入特征。
- BLS模型构建:构建一个宽度学习神经网络模型,并设置合适的增强层节点数量和激活函数。
- AOA优化:利用AOA算法对BLS模型的参数进行优化,找到模型的最优参数组合。
- 模型训练:使用优化后的BLS模型进行训练,并根据训练结果评估模型的性能。
4.2 算法流程
基于AOA优化BLS的瓦斯浓度回归预测模型的具体流程如下:
- 输入数据:将预处理后的瓦斯浓度数据作为模型的输入。
- 特征映射:将输入数据映射到BLS模型的增强层,生成一系列特征向量。
- 线性组合:通过线性组合的方式将增强层的输出组合成最终的预测结果。
- AOA优化:利用AOA算法对BLS模型的参数进行优化,更新增强层的权重和输出层的权重。
- 预测输出:使用优化后的BLS模型对新的瓦斯浓度数据进行预测。
5. 实验验证
为了验证本文模型的有效性和优越性,本文采用某矿井的真实瓦斯浓度数据进行实验,并与其他算法进行对比。
6. 总结
本文提出了一种基于阿基米德优化算法优化宽度学习神经网络的瓦斯浓度回归预测模型,该模型具有结构简单、训练速度快、泛化能力强等优点。通过真实矿井瓦斯浓度数据的实验验证,证明了本文模型的有效性和优越性,为煤矿瓦斯浓度预测提供了一种新的解决方案。
7. 未来展望
未来可以进一步研究以下几个方面:
- 探索更有效的特征工程方法,提取更多影响瓦斯浓度的关键特征。
- 将深度学习技术融入BLS模型,构建更复杂的网络结构,提高模型的预测精度。
- 结合其他智能优化算法,进一步优化BLS模型的参数,提升模型的性能。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类