✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
引言
硬币识别在自动售货机、自助收银机、金融交易等领域有着广泛的应用。传统的硬币识别方法通常依赖于机械传感器或磁性传感器,存在成本高、易损、识别精度有限等缺陷。近年来,随着计算机视觉技术的快速发展,基于机器视觉的硬币识别方法逐渐成为研究热点,其具有成本低、识别精度高、适应性强等优点。本文将深入探讨基于机器视觉的硬币数量及其总金额识别技术。
1. 系统概述
基于机器视觉的硬币识别系统主要包含以下几个模块:
- 图像采集模块: 使用摄像头或其他图像传感器采集硬币图像。
- 图像预处理模块: 对采集到的图像进行去噪、平滑、增强等操作,以提高图像质量。
- 特征提取模块: 从预处理后的图像中提取硬币的特征,例如形状、尺寸、纹理等。
- 硬币识别模块: 利用提取的特征进行硬币识别,区分不同面值的硬币。
- 数量统计模块: 统计识别出的硬币数量。
- 金额计算模块: 根据识别出的硬币面值和数量,计算总金额。
2. 关键技术
2.1 图像预处理
图像预处理是硬币识别系统的重要环节,其目的是提高图像质量,为后续的特征提取和识别奠定基础。常用的预处理方法包括:
- 去噪: 使用中值滤波、高斯滤波等方法去除图像中的噪声。
- 二值化: 将灰度图像转换为二值图像,简化图像信息。
- 边缘检测: 利用Canny算子等方法提取硬币的边缘信息。
2.2 特征提取
特征提取是将图像中的信息转化为便于识别的特征向量,是硬币识别系统的核心技术之一。常用的特征提取方法包括:
- 形状特征: 使用圆形度、面积、周长等特征描述硬币的形状。
- 纹理特征: 使用灰度共生矩阵、LBP算子等方法提取硬币表面的纹理信息。
- 颜色特征: 利用颜色直方图、颜色矩等方法提取硬币的颜色信息。
2.3 硬币识别
硬币识别是根据提取的特征对硬币进行分类,确定其面值。常用的识别方法包括:
- 模板匹配: 使用预先存储的硬币模板进行匹配,识别硬币类型。
- 机器学习: 利用支持向量机、神经网络等机器学习模型,训练识别模型。
- 深度学习: 使用卷积神经网络等深度学习模型,自动学习特征并进行识别。
2.4 数量统计和金额计算
识别出硬币后,需要对硬币数量进行统计,并根据硬币面值和数量计算总金额。可以使用图像分割技术将重叠的硬币分开,并进行计数。
3. 性能评估
基于机器视觉的硬币识别系统性能主要由以下指标衡量:
- 识别精度: 指系统正确识别硬币的比例。
- 识别速度: 指系统识别硬币所需的时间。
- 鲁棒性: 指系统在不同光照条件、硬币摆放方式等变化下,保持较高的识别精度。
4. 应用场景
基于机器视觉的硬币识别系统在以下场景中具有广泛的应用:
- 自动售货机: 自动识别投币金额,方便用户购买商品。
- 自助收银机: 实现自助收银功能,提高效率。
- 金融交易: 自动识别硬币面值,方便银行进行清点和结算。
- 博物馆、展览馆: 识别硬币文物,进行数字化管理。
5. 未来展望
随着机器视觉技术和深度学习技术的不断发展,基于机器视觉的硬币识别技术将不断完善,在以下方面具有广阔的发展前景:
- 提高识别精度: 利用更强大的深度学习模型,提高识别精度,识别更细微的特征。
- 增强鲁棒性: 提高系统在不同光照条件、硬币角度、遮挡等复杂环境下的识别能力。
- 扩展应用场景: 将硬币识别技术应用到更多领域,例如智能家居、智慧城市等。
结论
基于机器视觉的硬币数量及其总金额识别技术具有成本低、识别精度高、适应性强等优点,在自动售货机、自助收银机、金融交易等领域有着广泛的应用前景。未来,随着技术的发展,该技术将不断完善,应用范围将进一步扩大,为社会发展提供更加便捷、高效的服务
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌈🌈 各类智能优化算法改进及应用生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类