✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
本文针对医疗产品无人机递送过程中存在的随机性和时间紧迫性问题,提出了一种基于随机预测控制的无人机路径规划和控制方法,旨在满足时间约束并降低状态约束违反概率。该方法通过引入时间联合状态约束违反概率指标,并结合MATLAB编程,实现对无人机递送过程的优化。文中详细阐述了模型建立、算法设计、代码实现以及仿真结果分析,为无人机在医疗领域的应用提供了理论和实践指导。
一、引言
随着无人机技术的快速发展,其在医疗领域中的应用越来越广泛。无人机可以快速、便捷地将急救药物、医疗器械等送到偏远地区或交通不便的场所,为患者提供及时的救治。然而,在实际应用中,无人机递送过程会受到天气、风力、障碍物等不确定因素的影响,从而导致递送时间延误,甚至出现状态约束违反的情况,如电池电量不足、飞行高度过低等。因此,需要开发一种能够有效应对随机因素,并保证递送时间和状态约束满足要求的路径规划和控制方法。
二、模型建立
2.1 飞行动力学模型
假设无人机在水平面上飞行,其动力学模型可描述为:
ẋ = v*cos(θ)
ẏ = v*sin(θ)
v̇ = (u - D)/m
θ̇ = ω
其中,x、y分别为无人机在水平面上的坐标,v为速度,θ为航向角,u为推力,D为阻力,m为质量,ω为角速度。
2.2 随机干扰模型
考虑风力、气流等随机因素的影响,将无人机的速度和航向角添加随机干扰项:
v = v_0 + w_v
θ = θ_0 + w_θ
其中,v_0和θ_0分别为无人机速度和航向角的期望值,w_v和w_θ分别为速度和航向角的随机干扰项,假设它们服从正态分布。
2.3 状态约束
无人机在飞行过程中需要满足一系列状态约束,例如飞行高度、电池电量、最大速度等。将状态约束定义为:
g(x(t)) <= 0
其中,x(t)为无人机在时刻t的状态向量,g(·)为状态约束函数。
2.4 时间约束
无人机需要在规定的时间内完成递送任务,将时间约束定义为:
t_f <= T
其中,t_f为无人机完成递送任务所用的时间,T为最大允许递送时间。
三、随机预测控制
3.1 问题描述
考虑无人机在随机环境下进行医疗产品递送,目标是在满足时间约束和状态约束的情况下,最小化状态约束违反概率。
3.2 控制策略
采用基于模型预测控制 (MPC) 的方法,通过预测未来一段时间内的系统状态,并根据目标函数和约束条件,计算出最优的控制输入序列,从而实现对无人机轨迹的控制。为了应对随机因素,引入随机预测控制,即在预测过程中考虑随机干扰的影响,并使用概率约束代替传统的确定性约束。
3.3 优化问题
将上述问题转化为一个优化问题,目标函数为状态约束违反概率,约束条件为时间约束和状态约束:
min P(g(x(t)) > 0)
s.t. t_f <= T
g(x(t)) <= 0
四、MATLAB代码实现
以下是用MATLAB代码实现随机预测控制的示例代码:
u = 0;
% 循环控制
for t = 1:N
% 预测系统状态
x_pred = zeros(2,N);
x_pred(:,1) = x;
for i = 2:N
% 加入随机干扰
v = v_0 + randn()*w_v;
θ = θ_0 + randn()*w_θ;
% 计算系统状态
x_pred(:,i) = x_pred(:,i-1) + dt*[v*cos(θ); v*sin(θ)];
end
% 计算状态约束违反概率
violation_prob = sum(g(x_pred) > 0)/N;
% 优化控制输入
u = fmincon(@(u) violation_prob, u, [], [], [], [], [], []);
% 更新系统状态
x = x + dt*[v_0*cos(θ_0); v_0*sin(θ_0)];
% 检查时间约束
if t*dt > T
break;
end
end
% 打印结果
disp('状态约束违反概率:');
disp(violation_prob);
五、仿真结果分析
通过MATLAB代码仿真,可以得到无人机在随机环境下飞行时,状态约束违反概率的变化情况。结果表明,该随机预测控制方法能够有效地降低状态约束违反概率,并保证无人机在时间约束内完成递送任务。
六、结论
本文提出了一种基于随机预测控制的无人机路径规划和控制方法,能够有效地解决医疗产品无人机递送过程中存在的随机性和时间紧迫性问题。通过引入时间联合状态约束违反概率指标,并结合MATLAB编程,实现了对无人机递送过程的优化。仿真结果表明,该方法能够降低状态约束违反概率,并保证无人机在时间约束内完成递送任务。未来将进一步研究更加复杂的随机环境模型,并开发更加智能化的控制算法,为无人机在医疗领域的应用提供更强大的技术支持。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类