【故障诊断】基于侏儒猫鼬优化算法DMO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

轴承作为机械设备的关键部件,其可靠性直接影响着设备的正常运行。随着工业4.0的到来,智能故障诊断技术成为了保障设备安全可靠运行的重要手段。本文提出了一种基于侏儒猫鼬优化算法DMO优化双向时间卷积神经网络BiTCN的轴承数据故障诊断方法。该方法利用DMO算法对BiTCN网络的超参数进行优化,提高了模型的泛化能力和鲁棒性。同时,BiTCN网络能够有效地提取轴承振动信号中的时间特征,从而实现对不同故障类型的准确诊断。最后,本文给出了Matlab代码实现,并对该方法进行了实验验证,结果表明该方法在轴承故障诊断中取得了优异的性能。

关键词:轴承故障诊断;双向时间卷积神经网络;侏儒猫鼬优化算法;DMO;Matlab

1. 引言

轴承是机械设备中不可或缺的部件,其运行状态直接影响设备的正常工作。轴承故障会导致设备效率下降、维修成本增加甚至引发安全事故。因此,及时准确地识别和诊断轴承故障具有重要的实际意义。

传统的轴承故障诊断方法主要依赖于专家经验和人工分析,效率低下且受主观因素影响较大。近年来,随着人工智能技术的快速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点。其中,卷积神经网络(CNN)凭借其强大的特征提取能力在图像识别、语音识别等领域取得了巨大成功。然而,传统的CNN模型主要针对静态数据设计,难以有效提取时间序列数据的时序特征,无法满足轴承故障诊断的需求。

为了解决这一问题,本文提出了一种基于侏儒猫鼬优化算法DMO优化双向时间卷积神经网络BiTCN的轴承数据故障诊断方法。该方法结合了DMO算法的全局优化能力和BiTCN网络的时序特征提取能力,能够有效地识别轴承的多种故障类型。

2. 双向时间卷积神经网络BiTCN

双向时间卷积神经网络BiTCN是一种针对时间序列数据设计的深度学习模型,它结合了卷积神经网络(CNN)的特征提取能力和循环神经网络(RNN)的时序建模能力。BiTCN网络结构主要包括两个方向的卷积层和一个全连接层,分别用于提取时间序列数据的前向特征和后向特征,并将两者的特征信息融合,最终实现对时间序列数据的分类或回归预测。

2.1 网络结构

BiTCN网络结构主要包括三个部分:

  • 前向卷积层: 该层使用卷积核对时间序列数据进行前向卷积,提取数据的前向特征信息。

  • 后向卷积层: 该层使用卷积核对时间序列数据进行后向卷积,提取数据的后向特征信息。

  • 全连接层: 该层将前后向卷积层提取的特征信息进行融合,并输出分类或回归结果。

2.2 工作原理

BiTCN网络的工作原理如下:

  1. 将时间序列数据输入到前向卷积层,提取数据的前向特征信息。

  2. 将时间序列数据输入到后向卷积层,提取数据的后向特征信息。

  3. 将前后向卷积层提取的特征信息输入到全连接层,进行融合。

  4. 全连接层输出分类或回归结果。

2.3 优点

BiTCN网络具有以下优点:

  • 能够有效地提取时间序列数据的时序特征。

  • 对时间序列数据具有较强的鲁棒性。

  • 可以处理不同长度的时间序列数据。

3. 侏儒猫鼬优化算法DMO

侏儒猫鼬优化算法DMO是一种新型的元启发式优化算法,它模拟了非洲侏儒猫鼬觅食和避险的群体行为。DMO算法具有以下特点:

  • 全局搜索能力强。

  • 收敛速度快。

  • 参数少,易于实现。

3.1 算法原理

DMO算法主要包含以下步骤:

  1. 初始化种群。 随机生成一组候选解作为初始种群。

  2. 计算适应度值。 根据目标函数计算每个候选解的适应度值。

  3. 更新种群。 根据适应度值和预设的更新规则,更新种群中的候选解。

  4. 判断是否满足终止条件。 如果满足终止条件,则算法结束;否则,重复步骤2-4。

3.2 DMO算法的优势

DMO算法具有以下优势:

  • 全局搜索能力强: DMO算法能够在搜索空间中进行全局搜索,避免陷入局部最优解。

  • 收敛速度快: DMO算法的收敛速度较快,能够快速找到最优解。

  • 参数少,易于实现: DMO算法的参数较少,易于实现和调试。

4. 基于DMO优化BiTCN的轴承数据故障诊断方法

基于DMO优化BiTCN的轴承数据故障诊断方法利用DMO算法对BiTCN网络的超参数进行优化,提高了模型的泛化能力和鲁棒性。具体步骤如下:

4.1 数据采集与预处理

首先,采集不同故障类型下的轴承振动信号数据。然后,对数据进行预处理,包括信号滤波、降噪、特征提取等操作,为后续模型训练提供高质量的数据。

4.2 BiTCN网络构建

根据轴承数据的特点,构建一个BiTCN网络模型。该模型包含前向卷积层、后向卷积层和全连接层,并根据实际需求设置不同层数和参数。

4.3 DMO算法优化BiTCN网络超参数

利用DMO算法对BiTCN网络的超参数进行优化,包括卷积核大小、步长、激活函数等。DMO算法通过迭代优化,找到一组最佳的超参数组合,使得BiTCN网络能够在测试集上取得最佳的诊断性能。

4.4 模型训练与测试

使用预处理后的数据训练优化后的BiTCN网络模型。训练过程中,使用交叉验证方法评估模型性能,并调整网络参数,以达到最佳的诊断效果。最终,使用测试集评估训练好的模型在实际应用中的性能。

  • 📣 部分代码

%%  数据分析num_size = 0.7;                              % 训练集占数据集比例 outdim = 1;                                  % 最后一列为输出num_class = length(unique(res(:,end)));  % 计算类别数 num_samples = size(res, 1);                  % 样本个数kim = size(res, 2)-1;                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

⛳️ 运行结果

🔗 参考文献

[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.

[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.

[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.

[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.

[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
根据引用内容,侏儒优化算法(Dwarf Mongoose Optimization,DMO)是一种群体智能优化算法,其灵感来源于侏儒的群体觅食行为。引用中还提到了DMO算法Matlab代码和python代码。 因此,你可以在Python中实现侏儒优化算法。以下是一个简单的Python代码示例: ```python # 导入所需的库 import numpy as np # 定义侏儒优化算法函数 def dwarf_mongoose_optimization(objective_func, num_dimensions, num_iterations, population_size): # 初始化种群 population = np.random.uniform(low=-1, high=1, size=(population_size, num_dimensions)) # 迭代优化过程 for iteration in range(num_iterations): # 计算适应度值 fitness_values = objective_func(population) # 选择最佳个体 best_individual = population[np.argmax(fitness_values)] best_fitness = np.max(fitness_values) # 更新种群 new_population = np.zeros_like(population) for i in range(population_size): # 随机选择两个个体 indices = np.random.choice(population_size, size=2, replace=False) individual1 = population = individual1 + np.random.uniform(low=-1, high=1) * (best_individual - individual2) population = new_population return best_individual, best_fitness # 定义适应度函数(示例) def objective_func(x): return np.sum(x**2, axis=1) # 设置算法参数 num_dimensions = 10 num_iterations = 100 population_size = 50 # 运行侏儒优化算法 best_individual, best_fitness = dwarf_mongoose_optimization(objective_func, num_dimensions, num_iterations, population_size) # 打印结果 print("最佳个体:", best_individual) print("最佳适应度:", best_fitness) ``` 请注意,这只是一个简单的示例代码,你可以根据自己的需求进行修改和扩展。在实际应用中,你需要定义自己的目标函数,并根据具体问题进行参数调整和结果分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值