✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
一、引言
多曝光图像融合技术旨在将同一场景的不同曝光图像融合为一张具有更高动态范围、更多细节信息的图像。其在图像处理、计算机视觉等领域有着广泛应用,例如在遥感图像处理、医学图像分析、监控系统等。现有的多曝光图像融合方法大多基于像素强度或梯度信息,但往往忽略了图像全局信息的利用,导致融合后的图像细节不完整或存在伪影。
为了解决上述问题,本文提出了一种基于反映相对像素强度和全局梯度的自适应权值的多曝光图像融合方法。该方法将像素强度、局部梯度和全局梯度信息相结合,构建自适应权重函数,从而有效地融合多曝光图像。
二、相关工作
现有的多曝光图像融合方法主要分为以下几种:
-
**基于像素强度的方法:**这类方法通常采用加权平均的方法,根据像素强度值赋予不同权重,例如平均法、加权平均法等。然而,这些方法容易受到噪声的影响,且无法有效地保留图像细节。
-
**基于梯度信息的方法:**这类方法利用图像的梯度信息来衡量图像的边缘信息,并将其作为权重进行融合。例如,拉普拉斯算子、Sobel算子等。这些方法能够有效地保留图像细节,但容易产生伪影。
-
**基于空间域方法:**这类方法在空间域内对图像进行处理,例如基于小波变换、曲波变换、Contourlet变换等。这些方法能够有效地提取图像特征,但计算量较大。
-
**基于变换域方法:**这类方法将图像转换到频域进行处理,例如基于傅里叶变换、Gabor变换、方向梯度直方图(HOG)等。这些方法能够有效地提取图像特征,但对噪声敏感。
三、本文方法
本文提出的基于反映相对像素强度和全局梯度的自适应权值的多曝光图像融合方法主要包含以下步骤:
-
**图像预处理:**对输入的多曝光图像进行预处理,包括灰度化、直方图均衡化等,以提高图像质量。
-
**像素强度权重计算:**根据像素强度值计算像素强度权重,以突出不同曝光图像的亮度信息。
-
**局部梯度权重计算:**利用Sobel算子计算图像的局部梯度信息,并将其作为权重进行融合,以保留图像细节。
-
**全局梯度权重计算:**利用全局梯度信息计算全局梯度权重,以提高融合图像的整体对比度和清晰度。
-
**自适应权重函数构建:**将像素强度权重、局部梯度权重和全局梯度权重进行加权组合,构建自适应权重函数。
-
**图像融合:**根据自适应权重函数对输入图像进行融合,生成最终的融合图像。
四、算法流程
本文提出的方法流程如下:
-
输入多曝光图像集 {I<sub>1</sub>, I<sub>2</sub>, ..., I<sub>N</sub>}。
-
对图像进行预处理,得到 {I<sub>1</sub>', I<sub>2</sub>', ..., I<sub>N</sub>'}。
-
计算像素强度权重 W<sub>i</sub><sup>intensity</sup>,其中 i = 1, 2, ..., N。
-
计算局部梯度权重 W<sub>i</sub><sup>local</sup>,其中 i = 1, 2, ..., N。
-
计算全局梯度权重 W<sub>i</sub><sup>global</sup>,其中 i = 1, 2, ..., N。
-
构建自适应权重函数 W<sub>i</sub> = αW<sub>i</sub><sup>intensity</sup> + βW<sub>i</sub><sup>local</sup> + γW<sub>i</sub><sup>global</sup>,其中 α, β, γ 为权重系数。
-
根据自适应权重函数对输入图像进行融合,得到最终的融合图像 I<sub>fused</sub>。
五、实验结果及分析
为了验证本文方法的有效性,我们进行了多组实验,并与其他主流的多曝光图像融合方法进行了比较。实验结果表明:
-
本文方法能够有效地融合多曝光图像,生成具有更高动态范围、更多细节信息的图像。
-
与其他方法相比,本文方法能够更好地保留图像细节,减少伪影的产生。
-
本文方法对噪声具有较强的鲁棒性,能够有效地抑制噪声的影响。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类