【光学】光纤激光高阶导模,可以算前9个模式的振幅,光强和相位分布附matlab代码

 ✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

光纤激光器因其优异的性能,如高效率、紧凑性、可调谐性等,已广泛应用于各个领域。然而,除了基模(通常为高斯模)外,光纤激光器还会激发出高阶导模,这些高阶模的特性对激光器的性能,例如光束质量、输出功率稳定性以及应用场合的选择,都会产生显著的影响。深入理解和精确计算高阶导模的振幅、光强和相位分布,对于优化光纤激光器的设计和应用至关重要。本文将探讨光纤激光高阶导模的特性,并利用MATLAB编程实现前九个模式的振幅、光强和相位分布的计算与可视化。

光纤的导模特性由其折射率分布决定。对于步进折射率光纤,其导模可以通过求解亥姆霍兹方程来确定。在弱导光纤近似下,可以使用柱坐标系下的矢量亥姆霍兹方程,并采用分离变量法求解。解的形式通常为:

𝐸𝑟(𝑟,𝜙,𝑧)=𝐸𝑟(𝑟,𝜙)𝑒−𝑗𝛽𝑧 

前九个模式通常包括LP<sub>01</sub> (基模),LP<sub>11</sub> (两个简并模式),LP<sub>21</sub> (两个简并模式),LP<sub>02</sub> 和 LP<sub>31</sub> (两个简并模式)。 这些模式的场分布具有不同的形状和对称性。例如,LP<sub>01</sub> 模式具有高斯型的径向强度分布;LP<sub>11</sub> 模式具有两个瓣;而更高阶的模式则具有更复杂的分布。

为了计算这些模式的振幅、光强和相位分布,我们可以利用MATLAB编写程序。 以下代码展示了如何计算和可视化前九个LP模式的场分布:
% 计算前九个LP模式的场分布
modes = [0,1; 1,1; 1,1; 2,1; 2,1; 0,2; 3,1; 3,1]; % l,m
for i = 1:size(modes,1)
l = modes(i,1);
m = modes(i,2);
% 计算LPlm模式的场分布 (此处省略具体的Bessel函数计算,需要根据文献查找对应公式)
% ... (Bessel函数计算部分,需要根据选择的LP模公式代入相应参数) ...
E_r = ...; % 计算径向电场分量
E_phi = ...; % 计算方位角电场分量
E_z = ...; % 计算轴向电场分量

% 计算光强分布
Intensity = abs(E_r).^2 + abs(E_phi).^2 + abs(E_z).^2;

% 可视化场分布和光强分布
figure;
subplot(1,2,1); imagesc(PHI, R, Intensity); title(['LP_{',num2str(l),',',num2str(m),'} 光强分布']);
subplot(1,2,2); surf(PHI,R,Intensity); title(['LP_{',num2str(l),',',num2str(m),'} 光强分布(3D)']);

%计算相位分布
Phase = angle(E_r + 1i*E_phi + 1i*E_z);
figure;
imagesc(PHI,R,Phase); title(['LP_{',num2str(l),',',num2str(m),'} 相位分布']);
end

需要注意的是,上述代码中省略了具体的Bessel函数计算部分。 需要根据所选择的LP模公式代入相应的参数,例如贝塞尔函数J<sub>l</sub>(u)以及修正的贝塞尔函数K<sub>l</sub>(w),其中u和w是与归一化频率V以及模式阶数l和m相关的变量。 这些公式可以从光纤光学相关的文献中找到。 完整的代码需要补充这些计算部分才能运行。

通过运行此代码,我们可以获得前九个模式的光强和相位分布图像,直观地了解不同高阶模的特性。 这些信息对于光纤激光器的设计、模式选择和光束质量控制具有重要的指导意义。 进一步的研究可以考虑更精确的矢量模式分析,以及不同光纤结构(例如渐变折射率光纤)下的模式特性研究。 此外,还可以结合实验结果,对仿真结果进行验证和修正,以提高模型的精度和可靠性。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值