【图像隐写】基于哈达玛变换的抗剪切攻击的彩色图像水印算法研究附Matlab代码

 ✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击主页 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥 内容介绍

摘要: 数字图像水印技术作为一种有效的数字版权保护手段,受到了广泛关注。然而,传统的图像水印算法容易受到各种攻击,例如剪切攻击。本文针对彩色图像水印的鲁棒性问题,提出一种基于哈达玛变换 (Hadamard Transform, HT) 的抗剪切攻击的彩色图像水印算法。该算法利用哈达玛变换的能量集中特性和良好的抗剪切性能,将水印信息嵌入到图像的低频系数中,并设计了一种有效的嵌入和提取策略,以提高水印的不可见性和鲁棒性。实验结果表明,该算法在不同类型的剪切攻击下具有良好的鲁棒性,并且在保证水印不可见性的同时,能够有效地抵抗剪切攻击,为彩色图像的版权保护提供了一种可靠的解决方案。

关键词: 图像水印;哈达玛变换;剪切攻击;鲁棒性;彩色图像

1. 引言

数字水印技术虽已经广泛应用于很多领域,但目前面临的其中一个挑战就是剪切攻击,它是对含水印的载体进行裁剪,这样就会使得水印检测算法对于剪切后的载体失效,由于剩余部分含水印信息量太少,导致提取出的水印失真。因此,如何很好地抵抗剪切攻击也是目前数字水印技术研究的一个重要课题。

本次实验主要研究彩色图像,提出了抵抗剪切攻击的数字水印图像算法,同时算法对其他攻击也具有鲁棒性,并提高了水印的嵌入容量以及水印的不可见性等。两种算法都是利用彩色图像具有多通道的优势,将同步信息和水印信息嵌入到不同的颜色通道,从而消除了两者的相互干扰。主要研究工作如下所示:

提出了一种基于哈达玛变换的抗剪切图像水印算法。该算法的主要思想是对图像进行分块,在每一块中嵌入相同的同步信息。首先将分块后的图像进行8×8哈达玛变换,随机地选取N个哈达玛变换块嵌入同步信息;然后将水印图像置乱得到水印信息,最后将水印信息嵌入到哈达玛变换的中频系数。在图像经过剪切攻击后,可以通过检测同步信息找到一个完整的图像块,并从该图像块中提取完整的水印信息。

1.1 哈达玛变换综述

哈达玛变换(Hadamard transform),也叫沃尔什-阿达玛变换,属于非正弦正交变换的一种,也属于广义傅里叶变换的一种。

由于在离散傅里叶变换以及离散余弦变换过程中需要用到三角函数乘法与复数乘法,这些运算会消耗很多时间,因此在一些对时间要求比较高的领域,就需要一种更简便、更高效的变换,而沃尔什变换可以满足这一要求,沃尔什变换核矩阵仅仅包含+1与-1两个元素,这就使得在进行沃尔什变换的时候只涉及到加法和减法运算。由于没有了乘法运算,使用沃尔什变换就使算法的运行速度大大提升。

哈达玛变换其基本原理就是将沃尔什变换按照某种特定的方式进行排列,因此哈达玛变换核矩阵也是方阵,而且这个方阵的也只包含+1和-1这两种元素,同时每一行与每一列都是相互正交的。沃尔什变换和哈达玛变换的变换核矩阵只有行的次序是不同的。哈达玛变换的最大的优势之一就是其变换核矩阵的高阶矩阵能从低阶矩阵递推来,正是因为这一点使得哈达玛变换更受学术界的青睐。

当N=1时,哈达玛变换核矩阵为:H=1。根据递推关系可以得出,当N=2时哈达玛矩阵为:

1.2 水印嵌入算法

算法的主要原理是:将原始图像平均分为许多个大小相等的方块,在每一块图像中嵌入内容相同的水印信息。只要保证剪切后剩余的部分的含水印的载体图像存在一个完成的图像块,就可以通过定位完整图像块的左上角的位置,然后提取出原始的水印信息。

图像是通过嵌入同步信息来定位的,水印信息的嵌入是通过对图像进行8×8的哈达玛变换,取中频系数嵌入。由于彩色图像有红绿蓝三个通道,如果只使用一个分量来同时嵌入同步信息和水印信息,那么两部分信息必然会形成干扰,也会对图像的定位和水印信息的提取带来影响,因此,本算法充分利用彩色图像多通道的优势,同步信息与水印信息加入到不同的颜色分量,相互独立,这样可以减少图像定位和提取水印信息的相互影响,从而达到较好的效果。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值