✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 分集技术是提高无线通信系统可靠性的有效手段,通过在接收端采用多个独立的接收分支接收同一信号,然后进行合并处理,可以有效降低信道衰落的影响,从而提高系统的抗干扰能力和误码率性能。本文将对几种常见的通信分集接收机结构,包括选择分集、最大比合并分集和等增益合并分集,进行详细的结构分析和性能比较,重点分析其误码率性能,并探讨影响其性能的因素。
关键词: 分集接收机;选择分集;最大比合并分集;等增益合并分集;误码率;信道衰落
1. 引言
无线通信信道往往受到多径衰落、阴影衰落等各种因素的影响,导致接收信号质量下降,甚至出现严重的误码。为了克服信道衰落带来的负面影响,提高通信系统的可靠性,分集技术应运而生。分集技术的基本思想是利用信道的空间、时间、频率或极化多样性,在接收端接收同一信号的多个独立副本,然后通过一定的合并技术,降低信道衰落的深度和持续时间,最终提高系统性能。本文将重点关注分集接收机的结构和性能,特别是误码率的分析。
2. 分集接收机结构
常见的分集接收机结构主要包括以下几种:
2.1 选择分集 (Selection Combining, SC)
选择分集是最简单的一种分集技术。它在多个接收分支中选择信噪比 (SNR) 最高的分支信号作为输出。其优点是实现简单,成本低廉;缺点是只利用了信噪比最高的信号,忽略了其他分支信号的信息,因此分集增益较低。
2.2 最大比合并分集 (Maximal Ratio Combining, MRC)
最大比合并分集是一种性能优越的分集技术。它将多个接收分支的信号加权合并,权重系数与各分支的信噪比成正比。这样可以最大限度地利用所有接收分支的信息,获得最大的信噪比增益。MRC 的主要优点是分集增益高,误码率性能优越;缺点是实现复杂度相对较高,需要对各分支的信噪比进行精确估计。
2.3 等增益合并分集 (Equal Gain Combining, EGC)
等增益合并分集将多个接收分支的信号进行相干合并,每个分支的权重系数相同。它不需要对各分支的信噪比进行估计,实现简单,成本低廉。EGC 的分集增益介于 SC 和 MRC 之间,其性能通常优于 SC 但劣于 MRC。
3. 误码率性能分析
在 AWGN 信道下,采用 M-ary 数字调制方式时,分集接收机的误码率性能可以用如下公式表示:
-
-
等增益合并分集: 等增益合并分集的误码率分析相对复杂,通常需要借助蒙特卡洛仿真进行评估。
上述公式表明,在相同的平均信噪比下,分集分支数 L 越多,误码率越低。MRC 的误码率最低,其次是EGC,最后是SC。
4. 影响分集性能的因素
除了分集技术本身的选择,影响分集接收机性能的因素还包括:
-
分集分支间的相关性: 分支间的独立性越强,分集增益越大,误码率越低。如果分支间高度相关,分集的增益将显著降低,甚至失效。
-
信道模型: 不同的信道模型(如瑞利衰落、莱斯衰落)会对分集性能产生不同的影响。
-
调制方式: 不同的调制方式(如BPSK、QPSK、QAM)具有不同的误码率特性,会影响分集的有效性。
-
信道估计误差: 在 MRC 和 EGC 中,需要对信道进行估计,信道估计误差会降低分集增益。
5. 结论
本文对几种常见的通信分集接收机结构进行了详细的结构分析和性能比较,重点分析了其误码率性能。结果表明,MRC 分集具有最佳的误码率性能,其次是 EGC,最后是 SC。 然而,MRC 的实现复杂度最高。选择哪种分集技术需要根据具体的应用场景和系统要求进行权衡,考虑实现复杂度、成本和性能之间的平衡。未来研究可以关注更复杂的信道环境下的分集技术研究,以及基于深度学习的智能分集算法的设计。
📣 部分代码
r and down envelope of the known input (x,y).
%
% Input parameters:
% x the abscissa of the given data
% y the ordinate of the given data
% interpMethod the interpolation method
%
% Output parameters:
% up the upper envelope, which has the same length as x.
% down the down envelope, which has the same length as x.
%
% See also DIFF INTERP1
% Designed by: Lei Wang, <WangLeiBox@hotmail.com>, 11-Mar-2003.
% Last Revision: 21-Mar-2003.
% Dept. Mechanical & Aerospace Engineering, NC State University.
% $Revision: 1.1 $ $Date: 3/21/2003 10:33 AM $
if length(x) ~= length(y)
error('Two input data should have the same length.');
end
if (nargin < 2)|(nargin > 3),
error('Please see help for INPUT DATA.');
elseif (nargin == 2)
interpMethod = 'linear';
end
% Find the extreme maxim values
% and the corresponding indexes
%----------------------------------------------------
extrMaxValue = y(find(diff(sign(diff(y)))==-2)+1);
extrMaxIndex = find(diff(sign(diff(y)))==-2)+1;
% Find the extreme minim values
% and the corresponding indexes
%----------------------------------------------------
extrMinValue = y(find(diff(sign(diff(y)))==+2)+1);
extrMinIndex = find(diff(sign(diff(y)))==+2)+1;
up = extrMaxValue;
up_x = x(extrMaxIndex);
down = extrMinValue;
down_x = x(extrMinIndex);
% Interpolation of the upper/down envelope data
%----------------------------------------------------
up = interp1(up_x,up,x,interpMethod);
down = interp1(down_x,down,x,interpMethod);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇