【湍流】直接数值模拟(DNS)与雷诺平均纳维-斯托克斯(RANS)方程的求解:基于三种湍流模型的平面通道流动研究Matlab实现和报告

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

直接数值模拟(DNS)是求解纳维-斯托克斯方程的一种方法,它直接对控制流体运动的方程进行数值求解。然而,对于复杂流动和高雷诺数问题,DNS方法的计算成本极其高昂,甚至难以承受。因此,近年来发展了一系列湍流模型,通过对部分控制方程进行建模,以降低计算成本。本文旨在利用三种不同复杂程度的湍流模型求解雷诺平均纳维-斯托克斯(RANS)方程,模拟平面通道内的封闭流动。所采用的模型依次为:混合长度模型(零方程模型)、湍动能(TKE)模型(一方程模型)和k-ε模型(二方程模型)。

由于模拟的雷诺数较低,k-ε模型需要引入阻尼函数来捕捉从层流到湍流的过渡过程,特别是粘性底层(y+<5)的特性。本文尝试了四种不同的阻尼函数配置,其中两种未能获得有效的数值结果,产生了伪解。

本文的研究工作参考了课程讲义[6]以及Turbulence (P.A. Davison) [4]和Turbulent flows (S. B. Pope) [7]两本书籍。结果处理则利用MATLAB R2028a软件完成,相应的代码已附于本文。

一、引言

纳维-斯托克斯方程是描述流体运动的经典方程组,其精确求解对于理解和预测流体行为至关重要。然而,对于湍流等复杂流动,直接数值模拟(DNS)由于其巨大的计算量而受到限制。DNS需要在空间和时间上进行极细致的离散,以准确捕捉湍流运动的各个尺度,这对于高雷诺数流动而言,计算资源需求往往超出了现有计算能力的范围。

为了克服DNS的局限性,人们发展了各种湍流模型,这些模型通过对湍流运动的某些特征进行建模,来简化计算。本文关注的是雷诺平均纳维-斯托克斯(RANS)方程,它通过对纳维-斯托克斯方程进行雷诺平均,将瞬时速度分解为平均速度和脉动速度,并对脉动速度项进行模型化。RANS方程的求解大大降低了计算成本,使其能够处理工程实际中更为广泛的湍流问题。

二、数值方法与湍流模型

本文采用有限体积法求解RANS方程。选取的三种湍流模型分别为:

  1. 混合长度模型: 这是最简单的湍流模型之一,它基于普朗特混合长度的概念,通过经验公式估算湍流粘度。该模型无需求解额外的输运方程,计算成本最低。然而,其精度也相对较低,适用范围有限。

  2. 湍动能(TKE)模型: 该模型求解一个额外的湍动能输运方程,能够更准确地捕捉湍流能量的产生、耗散和输运过程。与混合长度模型相比,TKE模型具有更高的精度,但计算成本也相应提高。

  3. k-ε模型: 该模型求解两个额外的输运方程,分别为湍动能k和湍动能耗散率ε。k-ε模型是工程应用中最广泛的湍流模型之一,其精度相对较高,能够处理更复杂的湍流流动。然而,在低雷诺数流动中,k-ε模型需要引入阻尼函数来修正其在近壁区的不准确性。

三、低雷诺数效应与阻尼函数

对于低雷诺数流动,尤其是在近壁区,标准k-ε模型的精度会下降。这是因为该模型在推导过程中通常假设湍流充分发展,而低雷诺数流动中粘性效应显著,湍流并未充分发展。为了克服这一问题,本文在k-ε模型中引入了四种不同的阻尼函数,以修正近壁区的湍流粘度。其中两种阻尼函数配置未能得到合理的数值结果,分析其原因可能是阻尼函数的参数选择不当,或者该模型本身在该特定低雷诺数情况下适用性不足。这部分内容将在结果与讨论部分详细分析。

四、结论

本文利用三种不同的湍流模型模拟了平面通道内的低雷诺数封闭流动。结果表明,k-ε模型在引入合适的阻尼函数后能够较好地捕捉低雷诺数流动特性,但阻尼函数的参数选择对结果精度影响较大。混合长度模型和TKE模型的计算成本较低,但精度相对较低。未来的研究可以针对更复杂的流动和更高雷诺数情况进行数值模拟,并对阻尼函数进行更深入的研究,以提高k-ε模型在低雷诺数流动中的精度。

📣 部分代码

 ------------------------------------------------------------------------%

% Problem configuration

% ------------------------------------------------------------------------%

global Re lm n nfrec sigma_k c cd c_mu c_ep1 c_ep2 sigma_ep h

Re = 180;       % Re_tau

eps = 1e-3;      % Right Hand Side (RHS) error -> stadistically stationary

nfrec = 1000;    % Plot frecuency

h = 1;           % Half of the channel (Dimensionless h==h^*=1)

n = round(Re/4); % Number of nodes of the mesh

CFL = 1;         % Corant number associated with the viscous term

a = 1.5;         % Exponent amplificator of nodes

mplot = true;    % Mesh plot?

x0 = 0;          % Left bound

xf = h;          % Right bound

itmax = 2e6;     % Max number of iterations

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值