【优化调度】基于人工鱼群算法求解场桥和AGV联合调度附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 场桥和AGV (Automated Guided Vehicle) 联合调度问题是港口、物流中心等领域的关键优化问题,其目标是在满足各种约束条件下,最小化作业完成时间或其他目标函数。本文提出了一种基于人工鱼群算法 (Artificial Fish Swarm Algorithm, AFSA) 的新型联合调度方法。该方法将场桥和AGV的调度问题建模为一个混合整数规划问题,并利用人工鱼群算法的全局寻优能力有效地搜索最优或近似最优解。通过仿真实验,验证了该方法的有效性和优越性,并分析了算法参数对结果的影响。

关键词: 场桥调度;AGV调度;联合调度;人工鱼群算法;混合整数规划

1 引言

随着全球贸易的快速发展,港口和物流中心的货物吞吐量不断增加,对场桥和AGV的调度效率提出了更高的要求。高效的场桥和AGV联合调度能够显著降低运营成本,提高生产效率。传统的调度方法,例如启发式算法和线性规划方法,在处理大规模、复杂的联合调度问题时往往存在效率低、求解精度不足等问题。近年来,随着智能优化算法的快速发展,人工鱼群算法凭借其优良的全局寻优能力和易于实现的特点,在解决各种优化问题中展现出显著的优势。

本文针对场桥和AGV联合调度问题,提出一种基于人工鱼群算法的优化调度方法。该方法将问题建模为一个混合整数规划问题,考虑了场桥的作业时间、AGV的运输时间、场桥和AGV的容量约束以及其他实际约束条件。利用人工鱼群算法对该混合整数规划问题进行求解,并通过仿真实验验证了该方法的有效性。

2 问题描述与模型建立

场桥和AGV联合调度问题可以描述为:在给定的场桥数量、AGV数量、货物信息和场地布局信息等条件下,确定场桥的作业顺序和AGV的运输路线,以最小化总作业时间为目标。

为了方便建模,我们做如下假设:

  • 场桥和AGV均为单任务处理,即一个场桥或AGV在同一时刻只能执行一项任务;

  • 场桥的作业时间已知,并且不依赖于其他作业;

  • AGV的运输时间与距离成正比;

  • 场桥和AGV的容量约束已知;

  • 场地布局信息已知,并可以计算场桥与AGV之间的距离。

基于以上假设,我们可以将问题建模为一个混合整数规划问题,目标函数为最小化总作业时间:

min Z = Σ(场桥作业时间) + Σ(AGV运输时间)

约束条件包括:

  • 场桥容量约束:每个场桥在同一时刻只能处理一项任务;

  • AGV容量约束:每个AGV在同一时刻只能处理一项任务;

  • 时间约束:每个任务的开始时间和结束时间必须满足时间顺序关系;

  • 路径约束:AGV的路径必须是可行的;

  • 其他约束:例如,场桥的优先级、AGV的充电约束等。

3 基于人工鱼群算法的求解方法

人工鱼群算法是一种基于群体智能的优化算法,其核心思想是模拟鱼群觅食的行为。算法主要包括觅食、聚群和追尾三种行为。我们将人工鱼群算法应用于求解上述混合整数规划问题。

具体步骤如下:

  1. 初始化: 随机生成一定数量的人工鱼个体,每个个体代表一个可能的调度方案,用染色体编码表示。染色体编码方案需要设计,例如可以将场桥作业顺序和AGV运输路线编码到同一个染色体中。

  2. 觅食: 根据目标函数值,评估每个人工鱼个体的适应度。适应度值越低,表示调度方案越好。人工鱼根据其感知域内食物浓度选择移动方向,朝着食物浓度高的区域移动。

  3. 聚群: 人工鱼根据其感知域内同伴的分布情况进行聚群行为。人工鱼倾向于向同伴聚集,以提高搜索效率。

  4. 追尾: 人工鱼根据其感知域内最佳个体的方向进行追尾行为,以提高全局寻优能力。

  5. 迭代: 重复步骤2-4,直到满足停止条件,例如达到最大迭代次数或目标函数值满足精度要求。

  6. 结果输出: 输出最优或近似最优的调度方案,以及对应的总作业时间。

为了提高算法的效率和精度,可以对人工鱼群算法进行改进,例如引入自适应步长、动态调整感知域等。

4 仿真实验与结果分析

为了验证本文提出的方法的有效性,我们进行了仿真实验。实验中,我们考虑了不同规模的场桥和AGV联合调度问题,并与其他传统的调度算法进行了比较。实验结果表明,基于人工鱼群算法的调度方法能够有效地求解场桥和AGV联合调度问题,并且在求解精度和效率方面具有显著优势。

我们将进一步分析算法参数,例如人工鱼数量、感知域大小、步长等,对算法性能的影响。通过参数调整,可以优化算法的性能,使其能够更好地适应不同规模和复杂度的调度问题。

5 结论与展望

本文提出了一种基于人工鱼群算法的场桥和AGV联合调度优化方法。该方法将问题建模为混合整数规划问题,并利用人工鱼群算法的全局寻优能力进行求解。仿真实验验证了该方法的有效性和优越性。未来研究可以考虑以下几个方面:

  • 考虑更复杂的约束条件,例如场桥的维护时间、AGV的故障率等;

  • 研究更加高效的人工鱼群算法改进策略;

  • 将该方法应用于实际港口或物流中心的调度系统中。

通过不断改进和完善,基于人工鱼群算法的场桥和AGV联合调度方法有望在港口和物流领域发挥更大的作用,提高运营效率,降低运营成本。

📣 部分代码

startT=[71 186 346 484 100 135 237 292 398 433 40 152 311 366 470

​];

jobId=[1 1 1  1   ,  2 2 2 2 2 2 ,3 3 3 3 3];

pName{length(jobId)}='';

for i=1:length(jobId)

    pName(i)={['[',num2str(task_squence(i)),',',num2str(startT(i)),',',num2str(startT(i)+durationT(i)),']']};

end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值