【图像加密】基于光学衍射神经网络进行多图像加密和隐藏附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 随着信息安全需求的日益增长,图像加密技术变得至关重要。传统的图像加密方法往往面临计算复杂度高、安全性易受攻击等挑战。本文提出了一种基于光学衍射神经网络 (ODNN) 的多图像加密和隐藏方案,利用光学衍射的并行性和神经网络的学习能力,实现高效、安全的多图像加密以及在载体图像中隐藏加密图像的功能。该方案通过设计特定的ODNN结构,将多个待加密图像编码为衍射图案,并将其嵌入到预先选择的载体图像中。解密过程则通过逆向ODNN进行解码,恢复原始图像。本文将详细阐述该方案的架构、算法流程、安全性分析以及与现有方法的比较,并展望未来研究方向。

关键词: 图像加密;光学衍射神经网络;多图像加密;图像隐藏;信息安全

1. 引言

随着数字图像在各个领域广泛应用,对图像信息安全的需求日益迫切。图像加密技术作为一种重要的信息安全手段,旨在保护图像数据免受未授权访问和篡改。传统的图像加密算法,例如基于DES、AES等对称密码算法,以及RSA等非对称密码算法,虽然在安全性方面取得了一定的进展,但在处理大规模图像数据时,往往计算复杂度高,处理速度慢,难以满足实时应用的需求。此外,这些算法容易受到各种密码分析攻击,例如差分密码分析、线性密码分析等。

近年来,光学衍射技术因其并行处理能力强、速度快等优势,受到了广泛关注,并被应用于图像加密领域。而神经网络的学习能力则为提高加密算法的鲁棒性和安全性提供了新的途径。将光学衍射技术与神经网络结合,形成光学衍射神经网络 (ODNN),为图像加密提供了新的思路。本文提出一种基于ODNN的多图像加密和隐藏方案,旨在提高图像加密的效率和安全性。该方案不仅能够实现多图像的同时加密,还能将加密后的图像隐藏在载体图像中,进一步增强安全性。

2. 基于ODNN的多图像加密和隐藏方案

本方案的核心思想是利用ODNN将多个待加密图像编码为衍射图案,并将其嵌入到载体图像中。解密过程则通过逆向ODNN进行解码,恢复原始图像。具体方案如下:

(2.1) ODNN结构设计:

ODNN的结构设计是本方案的关键。我们设计了一个包含多个卷积层、池化层和全连接层的ODNN模型。卷积层用于提取图像特征,池化层用于降低特征维度,全连接层则用于将特征映射到衍射图案。 为了实现多图像加密,我们采用多输入通道的ODNN结构,每个通道对应一个待加密图像。 ODNN的权重通过训练数据集进行训练,以优化加密和解密的性能。训练数据集包含大量的图像及其对应的衍射图案。 训练的目标函数是最小化重建图像与原始图像之间的差异,并最大化衍射图案的随机性,以提高安全性。

(2.2) 加密过程:

  1. 图像预处理: 对多个待加密图像进行预处理,例如灰度化、归一化等。

  2. ODNN编码: 将预处理后的图像输入到设计的ODNN中。ODNN将图像特征映射到一个高维的衍射图案。

  3. 嵌入载体图像: 将生成的衍射图案嵌入到预先选择的载体图像中。嵌入方法可以采用LSB替换、DCT变换等技术,以保证嵌入后的载体图像视觉上不发生明显的变化。

  4. 传输或存储: 将嵌入衍射图案后的载体图像进行传输或存储。

(2.3) 解密过程:

  1. 载体图像提取: 从载体图像中提取嵌入的衍射图案。

  2. ODNN解码: 将提取的衍射图案输入到与加密过程相同的ODNN的逆向模型中。

  3. 图像后处理: 对解码后的图像进行后处理,例如反归一化等,恢复原始图像。

3. 安全性分析

本方案的安全性主要体现在以下几个方面:

(3.1) 密钥空间: ODNN的权重作为加密密钥,其密钥空间非常大,这使得穷举攻击变得不可行。
(3.2) 随机性: ODNN的输出是高维的衍射图案,具有较好的随机性,这使得统计攻击难以奏效。
(3.3) 鲁棒性: 通过训练ODNN,可以提高该方案对噪声和攻击的鲁棒性。
(3.4) 多图像加密: 多图像同时加密提高了效率,并增加了攻击的难度。
(3.5) 图像隐藏: 将加密后的信息隐藏在载体图像中,进一步增强了安全性。

4. 实验结果与讨论

(本部分需补充具体的实验结果,包括不同图像数量、不同ODNN结构、不同攻击方式下的性能比较,例如峰值信噪比(PSNR)、结构相似性(SSIM)、密钥敏感性等指标) 例如,我们可以比较使用不同数量卷积层的ODNN模型在图像加密和解密过程中的性能,以及在添加高斯噪声或剪切攻击后的图像质量。 同时,需要分析密钥空间的大小,以及对不同攻击方式的抵抗能力。

5. 结论与未来研究方向

本文提出了一种基于光学衍射神经网络的多图像加密和隐藏方案。该方案利用ODNN的并行处理能力和神经网络的学习能力,实现了高效、安全的多图像加密和隐藏。安全性分析表明,该方案具有较高的安全性。 未来的研究方向包括:

  • 探讨更复杂的ODNN结构,以进一步提高加密的安全性;

  • 研究针对不同攻击方式的鲁棒性增强策略;

  • 将该方案应用于实际应用场景,例如医疗影像安全、军事图像安全等;

  • 研究基于量子计算的攻击方法对该方案安全性的影响。

📣 部分代码

% % Q operator with dfx, dfy at frequency plane

pha = zeros(2*nn,2*mm);

for ii = 1:2*nn

    for jj = 1:2*mm

        pha(ii,jj) = dfx^2*(ii-nn-0.5)^2 + dfy^2*(jj-mm-0.5)^2; % fx^2 + fy^2

    end

end

% pha = e_pha_dfx;

e_pha = exp(1i*2*pi*z/r.*sqrt(1-r^2.*pha));

⛳️ 运行结果

🔗 参考文献

[1] 李贤丽,杨忠宝,张丽敏,等.基于细胞神经网络的图像加密新算法[J].自动化与仪器仪表, 2024(1):1-6.

[2] 孔凯.基于卷积神经网络和压缩感知的图像加密研究[D].河南大学,2022.

[3] 何永涛,黄福建,揭小丽,等.一种基于神经网络多特征图的图像加密方法:202411244305[P][2025-01-10].

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值