多项式模糊时滞系统的网络控制系统基于分段多项式李雅普诺夫函数PPLF应用于移动机器人和四旋翼的路径跟踪控制附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 本文研究了多项式模糊时滞系统在网络控制系统(NCS)框架下的路径跟踪控制问题,并针对移动机器人和四旋翼无人机等典型非线性系统,提出了一种基于分段多项式李雅普诺夫函数 (Piecewise Polynomial Lyapunov Function, PPLF) 的稳定性分析和控制器设计方法。该方法有效地处理了系统中存在的模糊性、时滞以及网络诱导的不确定性,并保证了闭环系统的稳定性和路径跟踪性能。通过理论分析和仿真实验,验证了所提出方法的有效性和优越性。

关键词: 网络控制系统; 多项式模糊系统; 时滞; 分段多项式李雅普诺夫函数; 路径跟踪; 移动机器人; 四旋翼无人机

1. 引言

近年来,随着网络技术的飞速发展,网络控制系统(NCS)逐渐成为控制领域的研究热点。NCS将控制系统中的传感器、控制器和执行器通过网络连接,具有灵活、成本低、易于维护等优点,广泛应用于移动机器人、四旋翼无人机、工业自动化等领域。然而,NCS也面临着网络诱导的时滞、数据丢失、带宽限制等挑战,这些因素会严重影响系统的稳定性和性能。

在许多实际应用中,被控对象的动态特性往往具有较强的非线性特征,难以用精确的数学模型描述。模糊控制作为一种有效的非线性控制方法,可以利用模糊规则来逼近复杂的非线性函数,并具有较强的鲁棒性。将模糊控制与NCS相结合,可以有效地处理系统中的非线性性和不确定性。

本文关注的是多项式模糊时滞系统在NCS框架下的路径跟踪控制问题。与传统的线性系统相比,多项式模糊系统能够更准确地逼近非线性系统,而考虑时滞则更符合实际NCS环境。然而,针对多项式模糊时滞系统的稳定性分析和控制器设计仍然是一个具有挑战性的课题。传统的李雅普诺夫函数方法在处理这类复杂系统时往往难以取得理想的效果。

为了解决上述问题,本文提出了一种基于分段多项式李雅普诺夫函数(PPLF)的稳定性分析和控制器设计方法。PPLF具有比传统多项式李雅普诺夫函数更强的表达能力,能够更好地处理系统状态空间的非凸性,从而提高控制系统的性能和鲁棒性。我们将该方法应用于移动机器人和四旋翼无人机的路径跟踪控制,并通过理论分析和仿真实验验证其有效性。

2. 系统建模

考虑如下多项式模糊时滞系统:

ẋ(t) = A(x(t), θ(t))x(t) + B(x(t), θ(t))x(t-d(t)) + u(t) + w(t)

其中,x(t) ∈ Rⁿ 为系统状态向量,u(t) ∈ Rᵐ 为控制输入向量,w(t) ∈ Rⁿ 为外部扰动向量,d(t) 为时变时滞,满足 0 ≤ d(t) ≤ d̅θ(t) 为模糊变量,A(x(t), θ(t)) 和 B(x(t), θ(t)) 为多项式模糊函数。

采用Takagi-Sugeno (T-S) 模糊模型,将多项式模糊函数表示为若干规则的加权和。每条规则的形式为:

Rᵢ: IF z₁(t) is Fᵢ₁ and ... and zₖ(t) is Fᵢₖ THEN ẋ(t) = Aᵢx(t) + Bᵢx(t-d(t)) + u(t)

其中,z₁(t), ..., zₖ(t) 为前件变量,Fᵢⱼ 为模糊集,Aᵢ 和 Bᵢ 为相应的系统矩阵。

3. 基于PPLF的控制器设计

为了保证闭环系统的稳定性,本文采用分段多项式李雅普诺夫函数(PPLF)作为系统的李雅普诺夫函数候选。PPLF将状态空间划分为多个区域,在每个区域内使用不同的多项式函数来描述李雅普诺夫函数。这种方法能够更好地处理系统状态空间的非凸性,提高控制器的设计精度。

通过构造合适的PPLF,并利用Lyapunov稳定性理论,可以推导出控制器的设计条件,并获得相应的控制器参数。具体来说,我们利用线性矩阵不等式(LMI)方法来求解控制器参数,保证闭环系统在给定的性能指标下达到稳定。

4. 应用于移动机器人和四旋翼的路径跟踪控制

我们将提出的基于PPLF的控制方法应用于移动机器人和四旋翼无人机的路径跟踪控制。对于移动机器人,我们将路径跟踪问题转化为轨迹跟踪问题,并利用PPLF设计控制器来跟踪期望轨迹。对于四旋翼无人机,我们将考虑其六自由度动力学模型,并利用PPLF设计控制器来实现姿态和位置的精确控制,从而完成路径跟踪任务。

5. 仿真实验

为了验证所提出方法的有效性,我们进行了大量的仿真实验。实验结果表明,基于PPLF的控制器能够有效地处理系统中的模糊性、时滞和网络诱导的不确定性,保证了移动机器人和四旋翼无人机的稳定性和路径跟踪精度,并优于传统的控制方法。

6. 结论

本文针对多项式模糊时滞系统的网络控制系统,提出了一种基于分段多项式李雅普诺夫函数的稳定性分析和控制器设计方法。该方法有效地解决了系统中的非线性、时滞和网络不确定性问题,并成功应用于移动机器人和四旋翼无人机的路径跟踪控制。仿真结果验证了该方法的有效性和优越性。未来的研究方向包括进一步提高控制器的鲁棒性和自适应性,以及考虑更复杂的网络环境和系统模型。

📣 部分代码

function actuator_init

% Distributed control system: actuator node

%

% Receives messages from the controller and actuates 

% the plant.

% Initialize TrueTime kernel

ttInitKernel('prioFP'); % nbrOfInputs, nbrOfOutputs, fixed priority

% Create sensor task

data.x1 =ttAnalogIn(1);

data.x2 =ttAnalogIn(2);

data.x3 =ttAnalogIn(3);

data.x4 =ttAnalogIn(4);

data.x5 =ttAnalogIn(5);

starttime = 0 ;

period = 0.050;

prio = 1;

ttCreatePeriodicTask('sens_task', starttime, period, 'senscodetest', data);

% Create actuator task

deadline = 100;

prio = 1;

ttCreateTask('act_task', deadline, prio, 'actcode');

% 琌ヴ叭┦ヴ叭碞琌弧ノㄆン臱笆よΑ

ttAttachNetworkHandler('act_task')

% Initialize network

ttCreateHandler('nw_handler', prio, 'msgRcvActuator');

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值