✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 火灾等紧急事件发生时,人群的快速、有序疏散至关重要。传统的疏散模型往往难以准确预测复杂环境下人群的动态行为,而基于蚁群算法的人群疏散模型则提供了一种新的思路。本文将深入探讨基于蚁群算法的人口疏散模型的构建方法,分析其优势和局限性,并阐述其在消防疏散危机仿真系统中的应用,最终展望该模型未来的发展方向。
关键词: 人群疏散,蚁群算法,仿真系统,消防安全,路径规划
一、 引言
在人口密集的场所,如大型商场、体育馆、地铁站等,一旦发生火灾等紧急事件,人员安全将面临极大挑战。高效的人群疏散是保障生命安全和减少财产损失的关键。传统的疏散模型,例如基于社会力模型或细胞自动机模型,在处理复杂环境和人群行为方面存在一定的局限性。例如,社会力模型对参数的敏感性较高,而细胞自动机模型的计算复杂度随着规模的扩大而急剧增加。因此,寻求一种能够更有效地模拟人群疏散行为的新型模型成为研究热点。
蚁群算法 (Ant Colony Optimization, ACO) 是一种源于自然界蚂蚁觅食行为的启发式算法。蚂蚁通过信息素的释放和感知来寻找食物的最短路径。这种分布式、正反馈的机制使得蚁群算法能够有效地解决复杂的优化问题,包括路径规划问题。近年来,将蚁群算法应用于人群疏散建模的研究逐渐增多,并取得了显著成果。该方法能够有效模拟人群在复杂环境下的自主寻路和避障行为,克服了传统模型的部分缺陷,为构建更精准、更可靠的疏散仿真系统提供了新的可能性。
二、 基于蚁群算法的人群疏散模型构建
基于蚁群算法的人群疏散模型的核心在于将每个疏散人员模拟成一只“蚂蚁”,其目标是找到从当前位置到安全出口的最短路径。模型构建主要包含以下步骤:
(一) 环境建模: 首先需要建立疏散环境的数字化模型,包括建筑物平面图、障碍物位置、出口位置以及安全通道等信息。这通常可以使用计算机辅助设计 (CAD) 软件或其他地理信息系统 (GIS) 软件完成。模型中需要准确地表示出建筑物的几何形状、通道的宽度、以及障碍物的尺寸和分布。
(二) 蚂蚁行为模拟: 每个“蚂蚁”代表一个疏散人员,其行为受到信息素浓度、自身速度、以及周围人群的影响。蚂蚁根据信息素浓度选择路径,信息素浓度越高,路径被选择的概率越高。蚂蚁在移动过程中会释放信息素,强化其经过的路径。信息素的挥发模拟了路径的逐渐衰减。
(三) 信息素更新机制: 信息素的更新机制是蚁群算法的核心。信息素的更新包括正反馈机制和负反馈机制。正反馈机制是指成功到达出口的蚂蚁会强化其经过路径上的信息素浓度;负反馈机制是指路径上的信息素会随着时间的推移而逐渐挥发。信息素的更新规则直接影响算法的收敛速度和解的质量。
(四) 避障机制: 为了模拟人群在疏散过程中避障的行为,模型需要加入避障机制。这通常可以基于一定的距离判断和路径调整规则来实现。当蚂蚁遇到障碍物时,它会根据周围环境选择新的路径继续前进。
(五) 人群密度影响: 模型还应考虑人群密度对疏散速度的影响。在人群密度较高的区域,个体速度会降低,甚至出现拥堵现象。可以通过引入密度函数来模拟这种影响,例如,在高密度区域降低蚂蚁的移动速度或增加其路径选择的随机性。
三、 模型的优势与局限性
与传统的疏散模型相比,基于蚁群算法的人群疏散模型具有以下优势:
-
全局寻优能力: 蚁群算法具有全局寻优能力,能够找到相对最优的疏散路径,提高疏散效率。
-
适应复杂环境: 能够有效处理复杂建筑物结构和多出口的情况。
-
模拟人群自主性: 能够模拟人群在疏散过程中的自主寻路和避障行为。
-
易于并行化: 蚁群算法易于并行化,能够提高计算效率。
然而,该模型也存在一些局限性:
-
参数敏感性: 算法的参数设置对结果有较大的影响,需要进行仔细的调整和优化。
-
计算复杂度: 对于规模非常庞大的人群疏散模拟,计算复杂度仍然较高。
-
人群行为建模的简化: 模型对人群行为的模拟仍然存在一定的简化,无法完全捕捉到人群在紧急情况下的所有复杂行为。
四、 在消防疏散危机仿真系统中的应用
基于蚁群算法的人群疏散模型可以有效地应用于消防疏散危机仿真系统中。该系统可以帮助消防部门和建筑管理部门评估建筑物的疏散能力,预测不同情景下的疏散时间,并优化疏散方案。通过输入建筑物平面图、人群数量、火灾发生位置等信息,系统可以模拟人群的疏散过程,并输出疏散时间、瓶颈区域、以及人员伤亡情况等结果。这将有助于制定更有效的疏散预案,提高建筑物的消防安全水平。
⛳️ 运行结果
🔗 参考文献
[1] 杨晓霞,康元磊,潘福全,等.基于蚁群算法和改进社会力模型的人群疏散辅助决策系统:CN202110180767.7[P].CN112862192A[2025-01-16].
[2] 杨晓霞,康元磊,潘福全,等.基于蚁群算法和改进社会力模型的人群疏散辅助决策系统:202110180767[P][2025-01-16].
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇