✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 自由呼吸容积心磁共振成像 (CMR) 易受运动伪影影响,限制了其临床应用。本文提出了一种名为压缩恢复与异常值剔除 (CORe) 的新方法,以提高自由呼吸CMR对运动的鲁棒性。CORe 方法将测量数据中的异常值建模为附加的辅助变量,并利用磁共振物理约束下的组稀疏性对辅助变量进行约束,通过迭代算法联合估计辅助变量和图像。通过模拟研究和真实数据实验,我们将 CORe 与传统压缩感知 (CS)、稳健回归 (RR) 和现有异常值剔除方法进行比较,结果表明 CORe 在抑制运动伪影、保持图像清晰度和提高血流测量可靠性方面具有显著优势。
1. 引言
心磁共振成像 (CMR) 作为一种无创成像技术,在心血管疾病诊断中发挥着至关重要的作用。然而,呼吸和心动等生理运动会造成严重的图像伪影,降低图像质量,影响诊断准确性。为了克服这一挑战,自由呼吸容积 CMR 技术应运而生,它无需呼吸屏气,提高了患者的舒适性和扫描效率。然而,自由呼吸 CMR 对运动更为敏感,需要有效的运动伪影抑制方法。
现有的运动伪影抑制方法主要包括基于图像配准的运动校正和基于重建算法的运动鲁棒性增强。基于配准的方法通常计算量大,对严重的运动伪影处理效果有限。而基于重建算法的方法,例如压缩感知 (CS),虽然能有效减少数据采集时间并提高图像质量,但其对异常值的敏感性限制了其在处理自由呼吸 CMR 数据中的应用。
本文提出了一种新颖的运动伪影抑制方法——压缩恢复与异常值剔除 (CORe),它结合了压缩感知的优点和异常值剔除策略,能够有效地抑制自由呼吸 CMR 中的运动伪影,提高图像质量和诊断准确性。
2. 方法
CORe 方法的核心思想是将测量数据中的异常值建模为一个附加的辅助变量。该辅助变量代表了由于运动引起的信号偏差。我们利用磁共振物理规律,对辅助变量施加组稀疏性约束,即假设异常值主要集中在局部区域,并与相邻像素具有相关性。通过迭代算法,我们联合估计图像和辅助变量,实现对异常值的有效剔除和图像的精确重建。
具体来说,CORe 方法的数学模型可以表示为:
y = Ax + Bz + n
其中,y 代表测量数据,A 代表正向投影矩阵,x 代表待重建图像,B 代表与运动相关联的矩阵,z 代表辅助变量(异常值),n 代表高斯白噪声。我们通过最小化以下目标函数来联合估计 x 和 z:
min ||x||1 + λ||z||{2,1} s.t. ||y - Ax - Bz||_2 ≤ ε
其中,||x||1 代表 x 的 L1 范数,用于实现图像的稀疏性;||z||{2,1} 代表 z 的组 L1 范数,用于实现辅助变量的组稀疏性;λ 为正则化参数,控制稀疏性的强度;ε 代表噪声容限。
我们采用迭代算法求解上述优化问题。具体算法流程包括:初始化 x 和 z,然后交替更新 x 和 z,直到收敛。
3. 结果
为了评估 CORe 方法的性能,我们进行了两组模拟研究和真实数据实验。模拟研究中,我们模拟了不同程度的运动伪影,并比较了 CORe、CS、稳健回归 (RR) 和一种现有的异常值剔除方法的性能。结果表明,在归一化均方误差 (NMSE) 和结构相似性指数 (SSIM) 方面,CORe 在 55 次不同实现中均优于其他方法。
真实数据实验中,我们使用了七个三维 (3D) 动作成像数据集、十二个静息四维 (4D) 血流成像数据集和八个应激四维 (4D) 血流成像数据集。专家读者对 3D 动作图像的评估表明,CORe 在抑制伪影的同时,能够保持或提高图像清晰度。对于 4D 血流图像,CORe 能够获得更可靠和一致的血流测量结果,尤其是在存在非自主运动或运动负荷的情况下。
4. 讨论
本文提出的 CORe 方法有效地提高了自由呼吸 CMR 对运动的鲁棒性。与传统的 CS 和 RR 方法相比,CORe 通过引入辅助变量来建模异常值,并利用组稀疏性约束,能够更有效地抑制运动伪影。模拟研究和真实数据实验的结果验证了 CORe 方法的优越性。
然而,CORe 方法也存在一些局限性。例如,正则化参数 λ 的选择需要根据具体数据进行调整。此外,CORe 方法的计算复杂度相对较高。未来的研究将集中于改进算法效率和参数选择策略,以进一步提高 CORe 方法的实用性。
5. 结论
CORe 方法为自由呼吸容积 CMR 提供了一种有效的运动伪影抑制方法。其在提高图像质量和血流测量可靠性方面的显著优势,有望促进自由呼吸 CMR 技术的临床应用,为心血管疾病的诊断提供更准确和可靠的影像学信息。 未来的研究将致力于优化算法,提升其计算效率和自动化程度,以实现更广泛的临床应用。
📣 部分代码
std_nmse_core=std(nmse_core);
mean_ssim_cs=mean(ssim_cs);
std_ssim_cs=std(ssim_cs);
mean_ssim_rr=mean(ssim_rr);
std_ssim_rr=std(ssim_rr);
mean_ssim_so=mean(ssim_so);
std_ssim_so=std(ssim_so);
mean_ssim_core=mean(ssim_core);
std_ssim_core=std(ssim_core);
%% Plotting
k=6; % Number of tiles in figure
fig=figure;
subplot(2,k,1); imagesc(abs(x),[0,xmax]); axis('image','off');
title("Reference Image");
subplot(2,k,2); imagesc(abs(x_zf),[0,xmax]); axis('image','off'); title('zf'); colormap('gray');
title(['ZF, nmse: ' num2str( 10*log10( norm(x(:)-x_zf(:))/norm(x(:)) ),3) ])
subplot(2,k,3); imagesc(abs(x_cs),[0,xmax]); axis('image','off'); title('CS'); colormap('gray');
title(['CS, avg nmse: ' num2str((mean_nmse_cs),3) '+- std:' num2str((std_nmse_cs),3) ])
subplot(2,k,4); imagesc(abs(x_rr),[0,xmax]); axis('image','off'); title('RR'); colormap('gray');
title(['RR, avg nmse: ' num2str((mean_nmse_rr),3) '+- std:' num2str((std_nmse_rr),3) ])
subplot(2,k,5); imagesc(abs(x_so),[0,xmax]); axis('image','off'); title('SO'); colormap('gray');
title(['SO, avg nmse: ' num2str((mean_nmse_so),3) '+- std:' num2str((std_nmse_so),3) ])
subplot(2,k,6); imagesc(abs(x_core),[0,xmax]); axis('image','off'); title('CORe'); colormap('gray');
title(['CORe, avg nmse: ' num2str((mean_nmse_core),3) '+- std:' num2str((std_nmse_core),3) ])
subplot(2,k,8); imagesc(5*abs(x_zf - x),[0,xmax]); axis('image','off'); colormap('gray');
title(['Error Map, nmse: ' num2str( ssim(real(x_zf),real(x)),3) ])
subplot(2,k,9); imagesc(5*abs(x_cs - x),[0,xmax]); axis('image','off'); colormap('gray');
title(['Error Map, avg ssim: ' num2str((mean_ssim_cs),3) '+- std:' num2str((std_ssim_cs),3) ])
subplot(2,k,10); imagesc(5*abs(x_rr - x),[0,xmax]); axis('image','off'); colormap('gray');
title(['Error Map, avg ssim: ' num2str((mean_ssim_rr),3) '+- std:' num2str((std_ssim_rr),3) ])
subplot(2,k,11); imagesc(5*abs(x_so - x),[0,xmax]); axis('image','off'); colormap('gray');
title(['Error Map, avg ssim: ' num2str((mean_ssim_so),3) '+- std:' num2str((std_ssim_so),3) ])
subplot(2,k,12); imagesc(5*abs(x_core - x),[0,xmax]); axis('image','off'); colormap('gray');
title(['Error Map, avg ssim: ' num2str((mean_ssim_core),3) '+- std:' num2str((std_ssim_core),3) ])
savefig(fig,fullfile(['study1_real',num2str(n_real),'_',datestr8601,'.fig']));
%% Saving data
save(['study1_real',num2str(n_real),'_',datestr8601]);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇