✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
多智能体系统(Multi-Agent System, MAS)广泛存在于自然界和人工社会中,例如鸟群的飞行、鱼群的游动、交通流的运行以及机器人集群协同工作等。理解和预测这些系统的集体行为对于许多科学和工程领域至关重要。然而,由于个体智能体之间复杂的相互作用以及系统的高维性,揭示多智能体系统中隐含的交互规律仍然是一个巨大的挑战。传统的建模方法,例如微分方程建模,往往需要预先假设系统结构,且难以处理高维、非线性的数据。近年来,稀疏识别非线性动力学(Sparse Identification of Nonlinear Dynamics, SINDy)算法为从数据中直接发现动力学系统规律提供了一种有效的方法,并逐渐应用于多智能体系统分析。本文将深入探讨SINDy算法在多智能体系统轨迹数据分析中的应用,并分析其优势与不足。
SINDy算法的核心思想是利用稀疏回归技术从观测数据中学习动力学系统的模型。它假设系统的动力学方程可以表示为一系列基函数的稀疏线性组合:
将SINDy算法应用于多智能体系统,需要考虑以下几个关键问题:
1. 数据预处理: 多智能体系统的轨迹数据通常包含噪声和缺失值。在应用SINDy算法之前,需要对数据进行预处理,例如平滑、滤波和插值等,以提高模型的精度和鲁棒性。数据预处理的质量直接影响最终模型的准确性和可靠性。不同的预处理方法可能会导致不同的模型结果,因此选择合适的预处理方法至关重要。
2. 基函数的选择: 基函数的选择对SINDy算法的性能有重要影响。合适的基函数应该能够有效地逼近系统的非线性动力学。通常需要根据系统的先验知识和数据的特点进行选择。如果对系统的动力学特性缺乏先验知识,则需要尝试多种基函数并进行比较,选择性能最佳的基函数集。 过少的基函数可能导致欠拟合,而过多的基函数可能导致过拟合。
3. 相互作用项的表示: 多智能体系统中的个体智能体之间存在复杂的相互作用。在构建SINDy模型时,需要考虑如何有效地表示这些相互作用。一种方法是将个体智能体的状态和相对状态作为基函数的输入,例如相对距离、相对速度和相对角度等。另一种方法是使用图神经网络等方法来表示智能体之间的连接关系,并将其与SINDy算法结合。
4. 模型可解释性: SINDy算法得到的模型通常是稀疏的,这有助于提高模型的可解释性。通过分析模型中的非零系数,可以识别出对系统动力学贡献最大的基函数和相互作用项。然而,对于复杂的系统,模型的可解释性仍然是一个挑战。
SINDy算法在多智能体系统中的优势:
-
数据驱动: 无需预先假设系统结构,可以直接从数据中学习动力学模型。
-
处理高维数据能力强: 能够处理大量的观测数据,并从中提取出关键的动力学特征。
-
能够处理非线性动力学: 能够有效地建模复杂的非线性系统。
-
模型稀疏性: 可以得到简化的模型,提高模型的可解释性。
SINDy算法在多智能体系统中的不足:
-
对数据质量敏感: 需要高质量的观测数据,否则模型的精度和鲁棒性会受到影响。
-
基函数的选择问题: 合适的基函数选择对模型的性能有重要影响,而基函数选择没有统一的标准。
-
可扩展性: 对于具有大量智能体的系统,计算复杂度可能很高。
-
模型泛化能力: 模型的泛化能力需要进一步研究。
总而言之,SINDy算法为从轨迹数据中发现多智能体系统中的交互规律提供了一种有效的方法。尽管存在一些不足之处,但随着算法的不断改进和应用场景的拓展,SINDy算法及其改进算法将在多智能体系统分析中发挥越来越重要的作用。未来的研究可以关注如何提高算法的鲁棒性、可扩展性和可解释性,以及如何将SINDy算法与其他机器学习技术结合,以更好地解决多智能体系统建模和预测的挑战。
📣 部分代码
close all; clear all; clc;
Startup_AddPaths()
% manual parameters to set
lib.exporder = 5; % exponent order; r.^i
lib.usesine = 1; % sine function; sin(i*r)
lib.usecos = 1; % cosine function; cos(i*r)
lib.ratexp = 3; % rational functions; r.^(-i)
lib.chebyorder = 0; % chebyshev polynomial of first kind
lib.legorder = 0; % legendre polynomial of first kind
lib.cosker = 0; % cosine kernel function; cos(pi*r/2), 0<r<1
lambda = 0.01; % threshold parameter for SLS
eta = 0.01; % noise magnitude
% user prompts to create structure for our ODE system
[N,d,tspan,L,M,phi,IC] = generateData();
% learning interval (T_L)
T_L = floor(L/2);
% creates library of n amount of functions psi
psiLib = poolPsi(lib);
% generates the data needed to construct our system
for m = 1:M
% generates initial conditions
y0{m} = generateIC(IC);
% create true system
% RHS - creates the right hand side for the system of 1st order odes
% RHS - outputs dotX = [f_phi(1); f_phi(2);... ; f_phi(d*N)]
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇