【SLAM】基于拓展卡尔曼滤波结合模糊控制实现机器人迷宫路径规划附MATLAB代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

随着机器人技术的飞速发展,自主移动机器人已广泛应用于工业生产、物流运输、灾难救援等多个领域。其中,自主路径规划是移动机器人实现自主导航的核心技术之一。在复杂环境中,尤其是在迷宫等不确定性较强的场景中,如何精确地定位机器人并规划出高效安全的路径,是当前研究的热点和难点。本文将深入探讨基于扩展卡尔曼滤波(Extended Kalman Filter, EKF)结合模糊控制的路径规划方法,旨在为复杂环境下的机器人自主导航提供一种有效的解决方案。

一、 导论:迷宫路径规划的挑战与机遇

迷宫路径规划问题本质上属于机器人运动规划问题,其核心在于如何根据已知的地图信息或者环境感知信息,找到从起点到终点的一条可行路径。然而,实际应用中,迷宫环境通常具有以下挑战:

  1. 环境不确定性: 迷宫的结构可能较为复杂,存在大量的障碍物、死胡同和狭窄通道,对机器人的感知和定位提出了较高要求。此外,机器人传感器的测量通常存在噪声和误差,进一步增加了环境的不确定性。

  2. 全局信息缺失: 通常情况下,机器人无法预先获知整个迷宫的完整地图,只能依靠自身的传感器进行局部感知,这就要求机器人具备实时地图构建和定位能力。

  3. 路径规划复杂性: 找到一条从起点到终点的最优路径通常是NP-Hard问题,传统的路径规划算法在复杂迷宫中可能会遇到计算量过大、效率低下的问题。

  4. 实时性要求: 机器人需要在动态环境中实时地调整路径,以应对环境变化或者障碍物的出现,这就对算法的实时性提出了较高要求。

为了应对上述挑战,研究人员提出了各种各样的路径规划方法,例如:基于图搜索的算法(如A*算法、Dijkstra算法)、基于采样的算法(如RRT算法、PRM算法)、基于优化的算法(如梯度下降法、遗传算法)以及基于机器学习的方法(如强化学习)。然而,这些方法通常在处理不确定性环境和动态环境时存在一定的局限性。

本文提出的基于扩展卡尔曼滤波(EKF)结合模糊控制的路径规划方法,旨在融合SLAM(Simultaneous Localization and Mapping)技术和智能控制的优势,克服传统路径规划方法的不足。

二、 SLAM与扩展卡尔曼滤波(EKF)

SLAM(Simultaneous Localization and Mapping)即同步定位与地图构建,是指机器人在未知环境中,一边移动一边构建环境地图,同时利用地图进行自身定位的过程。SLAM技术是实现机器人自主导航的关键。在SLAM的框架中,滤波器技术是实现定位与建图的核心方法之一。

扩展卡尔曼滤波(EKF)作为一种经典的非线性状态估计算法,在SLAM领域得到了广泛应用。其基本思想是将非线性系统在当前估计点附近线性化,然后利用卡尔曼滤波的框架进行状态估计。在机器人SLAM中,EKF通常用于估计机器人的位姿(位置和姿态)以及环境中的特征点(例如角点、线段)。

EKF算法的具体流程如下:

  1. 状态预测: 根据机器人的运动模型和控制输入,预测机器人当前的位姿和特征点的位置。

  2. 协方差预测: 根据运动模型和噪声模型,预测状态估计的协方差矩阵。

  3. 观测更新: 根据机器人的传感器测量值,计算测量值与预测值的残差,并通过卡尔曼增益对状态估计和协方差矩阵进行更新。

EKF算法的优点在于计算效率较高,易于实现,且在一定程度上可以处理非线性系统的状态估计问题。然而,EKF算法的缺点在于需要对非线性系统进行线性化,这可能会引入误差,并且对于高度非线性的系统,EKF算法的性能可能会下降。

在本文的方案中,EKF主要用于估计机器人在迷宫环境中的位姿,并通过构建局部地图来实现机器人的定位。EKF提供的精准位姿信息为后续的路径规划奠定了基础。

三、 模糊控制:处理不确定性和动态环境的有效工具

模糊控制是一种基于模糊集合理论和模糊逻辑的智能控制方法,其最大的特点是不需要精确的数学模型,而是通过模糊规则和隶属函数来实现控制。模糊控制的优点在于可以处理不确定性、非线性和难以建模的系统,这使得它在复杂的环境控制中具有独特的优势。

在本文的路径规划方案中,模糊控制主要用于根据机器人的当前位姿、目标位姿以及障碍物信息,生成机器人的控制指令,例如转向角度和速度。

模糊控制系统的基本组成部分如下:

  1. 模糊化: 将输入的精确值转换为模糊值,例如“距离较近”、“角度偏左”等。

  2. 模糊推理: 根据预定义的模糊规则,进行模糊推理,得出模糊控制量。

  3. 去模糊化: 将模糊控制量转换为精确的控制指令,例如具体的转向角度和速度。

模糊控制规则的制定是模糊控制系统设计的核心。通常情况下,模糊控制规则是通过专家经验或者试错法得到的。在本文的迷宫路径规划中,我们根据机器人在迷宫中可能遇到的情况,例如距离障碍物的远近、目标点的方向等,制定了一系列模糊控制规则,例如:

  • 当机器人距离障碍物较近时,应减速或转向避开障碍物。

  • 当机器人偏离目标点方向时,应调整转向角度以朝向目标点。

  • 当机器人距离目标点较远时,可以提高速度。

通过合理制定模糊控制规则,可以使得机器人能够灵活地应对复杂的迷宫环境,并有效地避免障碍物。

四、 基于EKF结合模糊控制的迷宫路径规划方法

本文提出的路径规划方法将扩展卡尔曼滤波(EKF)和模糊控制相结合,实现机器人在迷宫环境中的自主导航。具体的流程如下:

  1. 环境感知: 机器人利用自身的传感器(例如激光雷达、摄像头等)获取环境信息,例如障碍物的位置和形状。

  2. 局部地图构建: 基于EKF算法,估计机器人的位姿,并将传感器获取的环境信息进行整合,构建局部地图。

  3. 目标点确定: 根据任务要求,确定机器人的目标点。

  4. 模糊控制: 根据机器人的当前位姿、目标位姿和局部地图信息,利用模糊控制生成机器人的控制指令。

  5. 运动控制: 根据控制指令,控制机器人运动。

  6. 循环: 重复以上步骤,直到机器人到达目标点。

该方法的优势在于:

  • 融合SLAM和智能控制: 将SLAM技术和模糊控制有机结合,克服了传统路径规划方法在处理不确定性环境和动态环境时的不足。

  • 实时性强: EKF和模糊控制的计算效率较高,能够满足机器人实时路径规划的需求。

  • 鲁棒性高: 模糊控制能够处理传感器噪声和环境不确定性,提高了系统的鲁棒性。

五、 仿真与实验验证

为了验证本文提出的路径规划方法的有效性,我们利用仿真平台构建了一个迷宫环境,并模拟了机器人在迷宫中的运动过程。仿真结果表明,该方法能够有效地引导机器人避开障碍物,并成功到达目标点。此外,我们还在实际机器人平台上进行了实验,进一步验证了该方法的实用性。实验结果与仿真结果基本一致,表明该方法具有良好的应用前景。

📣 部分代码

function y = evaluatefis1(fis,x)

    %#codegen

    opt = evalfisOptions('NumSamplePoints',51);

    y = evalfis(fis,x,opt);

end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值