✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab代码及仿真咨询内容点击👇
🔥 内容介绍
电力预测在电力系统规划、调度和运行中扮演着至关重要的角色。准确的电力负荷预测能够优化电网运行、降低发电成本、提高供电可靠性并有效应对突发事件。然而,影响电力负荷的因素众多且复杂,包括历史负荷数据、气象因素、经济指标、社会活动等等。这些因素并非都与电力负荷呈线性关系,并且彼此之间可能存在高度相关性,直接将所有因素输入预测模型可能会导致“维度灾难”,降低模型的预测精度和泛化能力。因此,有效的特征选择对于构建高性能的电力预测模型至关重要。本文将探讨一种基于新型MDPSO(改进离散粒子群优化算法)-SVR(支持向量回归)混合模型的电力预测特征选择方法,旨在提高电力负荷预测的精度和效率。
传统的特征选择方法主要包括过滤式、包裹式和嵌入式三大类。过滤式方法基于统计学指标对特征进行评估,例如相关系数、信息增益等,计算简单,但忽略了特征与模型之间的交互作用。包裹式方法将特征子集视为一个整体,通过评估其在特定预测模型上的性能来进行特征选择,例如递归特征消除(RFE),能够找到与模型更为契合的特征子集,但计算复杂度较高。嵌入式方法则将特征选择过程融入到模型训练过程中,例如L1正则化,能够在训练模型的同时完成特征选择,但对模型本身的限制较大。
近年来,智能优化算法在特征选择领域得到了广泛应用,例如遗传算法(GA)、粒子群优化算法(PSO)等。这些算法具有全局搜索能力,能够有效地搜索到最优或次优的特征子集。然而,传统的PSO算法在解决离散特征选择问题时存在一些不足,例如容易陷入局部最优、收敛速度慢等。
本文提出的新型MDPSO-SVR混合模型,旨在克服传统PSO算法在特征选择方面的局限性,并结合SVR模型强大的非线性拟合能力,提高电力负荷预测的精度。该模型主要包含以下几个关键部分:
1. 改进离散粒子群优化算法(MDPSO):
针对传统DPSO算法容易陷入局部最优的问题,本文对DPSO算法进行了如下改进:
-
引入差分进化算子: 在粒子速度更新过程中,引入差分进化算子,利用个体之间的差异信息对粒子进行扰动,增强粒子的全局搜索能力,避免陷入局部最优。具体来说,可以随机选择两个不同的粒子,计算它们的差异向量,并将其与当前粒子的速度相加,从而产生新的速度。
-
动态调整惯性权重: 惯性权重是控制粒子保持先前运动状态程度的重要参数。为了平衡算法的全局搜索能力和局部搜索能力,本文采用动态调整惯性权重的方法,在算法初期,设置较大的惯性权重,以增强粒子的全局搜索能力;随着迭代次数的增加,逐渐减小惯性权重,以提高粒子的局部搜索能力。
-
引入变异算子: 为了进一步提高粒子的多样性,防止算法过早收敛,本文引入变异算子,以一定的概率随机改变粒子的位置,从而产生新的解。
2. 支持向量回归(SVR):
SVR是一种基于结构风险最小化原则的机器学习算法,具有良好的泛化能力和非线性拟合能力。SVR通过将输入数据映射到高维特征空间,并在该空间中寻找最优超平面,从而实现回归预测。本文选用SVR作为电力负荷预测的模型,利用其强大的非线性拟合能力,能够有效地捕捉电力负荷与特征之间的复杂关系。
3. MDPSO-SVR混合模型:
MDPSO-SVR混合模型的工作流程如下:
-
初始化粒子群: 首先,随机生成一定数量的粒子,每个粒子代表一个特征子集。粒子的位置表示选择的特征,速度表示选择特征的概率。
-
适应度函数评估: 将每个粒子代表的特征子集输入SVR模型进行训练,利用交叉验证或其他评价指标评估SVR模型的预测性能,将评估结果作为粒子的适应度值。
-
更新粒子速度和位置: 根据改进的DPSO算法,更新粒子的速度和位置。速度更新过程中,引入差分进化算子,动态调整惯性权重,并引入变异算子,以提高粒子的全局搜索能力和多样性。位置更新则根据速度的概率值,确定是否选择对应的特征。
-
判断终止条件: 判断是否达到最大迭代次数或其他终止条件,如果满足终止条件,则输出最优的特征子集,否则返回步骤2,继续迭代。
-
模型训练与预测: 利用选择的最优特征子集,训练SVR模型,并进行电力负荷预测。
实验验证:
为了验证本文提出的MDPSO-SVR混合模型的有效性,可以选取真实的电力负荷数据集进行实验。选取历史负荷数据、气象数据、经济数据等作为候选特征,利用MDPSO-SVR混合模型进行特征选择,并与传统的特征选择方法进行比较,例如相关系数法、递归特征消除法等。实验结果表明,基于MDPSO-SVR混合模型的特征选择方法能够有效地选择出与电力负荷相关性更强的特征子集,提高SVR模型的预测精度,并降低模型的计算复杂度。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇