【车间调度】基于模拟退火优化算法的的并行车间机器优化调度附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

制造业的竞争力很大程度上取决于生产效率和成本控制,而车间调度作为生产管理的核心环节,直接影响着生产周期、资源利用率和交付能力。尤其是在现代制造环境下,并行车间调度问题(Parallel Machine Scheduling Problem, PMS)由于其复杂性和NP-hard属性,一直是学术界和工业界研究的重点和难点。传统的优化方法往往难以在合理的时间内找到最优解,因此,采用启发式算法或元启发式算法进行求解成为了主流趋势。本文将重点探讨基于模拟退火优化算法(Simulated Annealing Algorithm, SA)的并行车间机器优化调度,分析其原理、优势以及应用,旨在为相关领域的实践提供理论参考。

并行车间调度问题是指将多个工件分配到多个并行机器上进行加工,并确定每个工件的加工顺序,以达到某个或多个优化目标,例如最小化完工时间、最小化迟交工件数量、最大化机器利用率等。与其他调度问题相比,并行车间调度问题更强调资源分配的灵活性,需要综合考虑工件的工艺路线、机器的性能差异以及约束条件,才能实现整体生产效率的提升。

传统的调度方法,如优先级规则、数学规划等,在解决小规模问题时具有一定的优势,但随着问题规模的增大,其求解效率会急剧下降。而基于启发式算法或元启发式算法的优化方法,则可以在牺牲一定最优性的前提下,在可接受的时间范围内找到较好的可行解。模拟退火算法作为一种经典的元启发式算法,凭借其简单易懂、易于实现、全局搜索能力强等优点,在解决复杂的优化问题中得到了广泛应用。

模拟退火算法的思想来源于冶金退火过程,即将固体缓慢冷却,使其内部结构达到能量最低的状态。在优化问题中,目标函数值对应于固体能量,而问题的解空间则对应于固体的内部结构。算法从一个初始解出发,通过 Metropolis 准则,以一定的概率接受更差的解,从而跳出局部最优,最终收敛于全局最优解。

具体而言,模拟退火算法的核心步骤包括:

  1. 初始化: 随机生成一个初始解,设定初始温度T0,降温速率α,终止温度Tmin。初始解的选择对算法的收敛速度和解的质量有一定影响,可以根据具体问题进行选择。初始温度要足够高,保证算法在初始阶段能够充分探索解空间。

  2. 迭代搜索: 在当前温度下,进行多次迭代,每次迭代执行以下步骤:

    • 生成新解: 对当前解进行邻域搜索,生成一个新的解。邻域搜索策略的选择直接影响着算法的搜索效率和解的质量。对于并行车间调度问题,常用的邻域搜索策略包括交换工件的加工顺序、将工件从一台机器移动到另一台机器等。

    • 计算目标函数值: 计算新解的目标函数值,例如完工时间、迟交工件数量等。

    • 判断接受概率: 计算目标函数值的变化量ΔE,并根据 Metropolis 准则判断是否接受新解。如果ΔE < 0,则接受新解,即目标函数值降低。如果ΔE > 0,则以概率exp(-ΔE/T)接受新解,即目标函数值升高。这个概率接受机制允许算法跳出局部最优解,从而提高找到全局最优解的可能性。

  3. 降温: 降低温度,T = αT。降温速率α的选择影响着算法的收敛速度和解的质量。较大的降温速率会导致算法过早收敛于局部最优解,而较小的降温速率则会增加算法的计算时间。

  4. 终止条件: 当温度低于终止温度Tmin或迭代次数达到预设值时,算法终止。

将模拟退火算法应用于并行车间机器优化调度,需要针对具体问题进行设计和优化。例如,针对最小化完工时间的并行车间调度问题,可以定义目标函数为最大完工时间(Makespan),并采用如下策略:

  • 编码方式: 采用基于工件的编码方式,将每个工件的加工顺序表示为一个序列。

  • 邻域搜索: 可以采用以下邻域搜索策略:

    • 交换工件: 随机选择两个工件,交换它们在机器上的加工顺序。

    • 插入工件: 随机选择一个工件,将其从当前机器上移除,并插入到另一台机器的合适位置。

  • 目标函数计算: 根据工件的加工顺序和机器的加工能力,计算每个工件的完工时间,并取最大值作为目标函数值。

  • 参数设置: 根据经验和实验,设置初始温度、降温速率和终止温度等参数。

与其他优化算法相比,模拟退火算法具有以下优势:

  • 全局搜索能力强: 通过概率接受更差的解,可以跳出局部最优解,从而提高找到全局最优解的可能性。

  • 鲁棒性好: 对初始解的选择不敏感,即使从一个较差的初始解出发,也能最终收敛于全局最优解。

  • 易于实现: 算法原理简单易懂,易于编程实现。

  • 适用性广: 可以应用于各种类型的优化问题,包括离散优化问题和连续优化问题。

然而,模拟退火算法也存在一些不足之处:

  • 参数设置复杂: 算法的性能对参数设置敏感,需要根据具体问题进行调整。

  • 计算时间长: 由于需要进行大量的迭代计算,算法的计算时间较长。

  • 难以保证全局最优: 即使算法最终收敛,也难以保证找到的是全局最优解,而只是一个较好的可行解。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值