✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
锂离子电池作为一种能量存储设备,在电动汽车、储能系统和便携式电子设备等领域得到了广泛应用。然而,锂电池性能受到多种因素的影响,包括温度、充放电速率和老化状态等,这使得精确评估电池的健康状况变得至关重要。其中,荷电状态 (State of Charge, SOC) 是衡量电池可用容量的关键指标,精确的SOC估计对于电池管理系统 (Battery Management System, BMS) 的安全运行、能量优化和寿命延长至关重要。
传统的SOC估计方法包括安时积分法、开路电压法和内阻法等。安时积分法原理简单,易于实现,但误差会随着时间的推移而累积,缺乏在线校正机制;开路电压法需要在电池静置一段时间后测量开路电压,不适用于动态工况;内阻法对测量精度要求较高,且内阻受温度等因素影响较大。因此,需要开发一种更加精确、鲁棒且适用于在线应用的SOC估计方法。
卡尔曼滤波 (Kalman Filter, KF) 是一种基于状态空间模型的递归滤波算法,能够融合多种传感器信息,对系统状态进行最优估计。它能够利用系统模型和测量数据,不断修正估计值,从而提高估计精度。然而,标准的卡尔曼滤波算法要求系统模型是线性的,而锂电池的充放电过程呈现出高度非线性特性。因此,需要对卡尔曼滤波进行改进,以适应锂电池的应用。
扩展卡尔曼滤波 (Extended Kalman Filter, EKF) 是卡尔曼滤波的一种非线性扩展,它通过对非线性函数进行线性化,将其近似为线性函数,从而能够应用于非线性系统。EKF通过计算雅可比矩阵来线性化系统模型,然后利用标准的卡尔曼滤波算法进行状态估计。然而,EKF的线性化过程可能会引入误差,特别是在系统非线性度较高的情况下。
在实际应用中,系统噪声和测量噪声的统计特性往往是未知的,或者随着时间和工况而变化。固定的噪声协方差矩阵会导致卡尔曼滤波的性能下降,甚至发散。为了解决这个问题,自适应卡尔曼滤波 (Adaptive Extended Kalman Filter, AEKF) 被提出。AEKF能够根据测量数据在线估计噪声协方差矩阵,从而提高滤波器的鲁棒性和适应性。
AEKF的基本原理与算法流程:
AEKF算法的核心在于利用残差序列来估计过程噪声协方差矩阵 (Q) 和测量噪声协方差矩阵 (R)。残差序列是实际测量值与预测测量值之间的差异,它反映了模型误差和测量噪声的影响。
-
状态空间模型的建立:
首先需要建立锂电池的状态空间模型。状态空间模型由状态方程和测量方程组成。
-
状态方程: 描述了SOC随时间的变化规律。 通常可以基于电池的等效电路模型 (例如:Rint模型、Thevenin模型等) 和安时积分法来建立。 例如,一个简单的状态方程可以表示为:
SOC(k+1) = SOC(k) - (η * I(k) * Δt) / Qn
其中,
SOC(k)
表示k时刻的SOC,η
表示库伦效率,I(k)
表示k时刻的充放电电流,Δt
表示采样时间间隔,Qn
表示电池的额定容量。 -
测量方程: 描述了测量值 (例如:电压、电流等) 与SOC之间的关系。 常用的测量方程是基于电池端电压与SOC之间的关系建立的。 例如,可以利用一个查找表或者一个多项式函数来描述这种关系:
V(k) = f(SOC(k), I(k), T(k)) + v(k)
其中,
V(k)
表示k时刻的电池端电压,f()
表示SOC、电流和温度与端电压之间的函数关系,T(k)
表示k时刻的电池温度,v(k)
表示测量噪声。
-
-
EKF的迭代过程:
AEKF的迭代过程与标准的EKF类似,包括预测和更新两个步骤。
-
卡尔曼增益:
K(k+1) = P(k+1|k) * H(k+1)^T * (H(k+1) * P(k+1|k) * H(k+1)^T + R(k+1))^(-1)
-
状态更新:
SOC(k+1|k+1) = SOC(k+1|k) + K(k+1) * (V(k+1) - V(k+1|k))
-
协方差更新:
P(k+1|k+1) = (I - K(k+1) * H(k+1)) * P(k+1|k)
-
状态预测:
SOC(k+1|k) = f(SOC(k|k), I(k))
-
协方差预测:
P(k+1|k) = A(k) * P(k|k) * A(k)^T + Q(k)
-
测量预测:
V(k+1|k) = h(SOC(k+1|k), I(k+1))
-
预测步骤:
其中,
SOC(k+1|k)
表示基于k时刻的信息对k+1时刻的SOC的预测值,P(k+1|k)
表示预测误差协方差,A(k)
表示状态方程的雅可比矩阵,Q(k)
表示过程噪声协方差矩阵,V(k+1|k)
表示基于k+1时刻预测状态的测量预测值,h()
表示测量方程,实际上就是测量方程的函数f()
, 需要使用雅可比矩阵线性化,H(k)
表示测量方程的雅可比矩阵。 -
更新步骤:
其中,
K(k+1)
表示卡尔曼增益,SOC(k+1|k+1)
表示基于k+1时刻测量值更新后的SOC估计值,P(k+1|k+1)
表示更新后的误差协方差,R(k+1)
表示测量噪声协方差矩阵,V(k+1)
表示实际的测量值。
-
-
自适应噪声估计:
AEKF的关键在于对过程噪声协方差矩阵Q和测量噪声协方差矩阵R进行自适应估计。常用的自适应估计算法包括基于残差方差的估计算法和基于最大似然估计的算法。
-
基于残差方差的估计算法:
该算法利用残差序列的统计特性来估计噪声协方差。 例如,可以使用以下公式来更新R:
R(k+1) = (1 - d) * R(k) + d * (ν(k+1) * ν(k+1)^T)
其中,
ν(k+1) = V(k+1) - V(k+1|k)
表示残差,d
表示遗忘因子,取值范围为(0, 1),用于控制新旧数据的权重。 类似地,也可以使用残差序列来更新Q,但需要根据系统模型进行调整。 通常Q的更新比较复杂,需要结合具体的电池模型和实验数据来确定。 -
基于最大似然估计的算法:
该算法通过最大化似然函数来估计噪声协方差。 该方法需要计算似然函数,并使用优化算法来求解最大似然估计值。
-
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇