【路径规划】基于拓展随机树RR算法的路径规划问题附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

路径规划作为机器人学、自动化以及人工智能领域的核心问题之一,旨在寻找从起始点到目标点,同时满足特定约束条件(如避障、最短距离、最小能耗等)的最优或可行路径。随着应用场景日益复杂,对路径规划算法的需求也日益迫切,促使研究者不断探索新的算法和优化策略。拓展随机树(Rapidly-exploring Random Tree, RRT)算法因其简单高效、易于实现的特点,在非凸、高维空间中得到了广泛应用。本文将深入探讨基于拓展随机树RR算法的路径规划问题,分析其基本原理、优势与局限性,并探讨其在不同领域的应用前景。

拓展随机树算法的核心思想是通过随机采样和局部扩展,逐步构建一棵树状结构,最终连接起始点和目标点。该算法的执行流程大致可分为以下几个步骤:

  1. 初始化: 创建一个以起始点为根节点的树 T,并将起始点作为初始节点添加到 T 中。

  2. 随机采样: 在整个搜索空间中随机选取一个采样点 X_rand。

  3. 寻找最近节点: 在树 T 中找到距离 X_rand 最近的节点 X_near。常用的距离度量方法包括欧式距离、曼哈顿距离等。

  4. 拓展: 从 X_near 向 X_rand 方向以步长 Δ 拓展一个新节点 X_new。拓展的过程需要进行碰撞检测,确保 X_new 位于无障碍区域。若拓展过程中遇到障碍物,则终止拓展。

  5. 添加节点: 将 X_new 添加到树 T 中,并建立 X_new 与 X_near 之间的连接。

  6. 连接目标: 当 X_new 与目标点之间的距离小于阈值时,或者当从 X_new 到目标点存在一条无碰撞路径时,将目标点添加到树 T 中,并成功连接起始点和目标点。

  7. 迭代: 重复步骤 2 至 6,直到找到满足要求的路径或者达到设定的迭代次数上限。

RRT算法的优势在于其概率完备性,即随着迭代次数的增加,算法最终能够找到可行路径的概率趋近于 1。此外,RRT算法的实现相对简单,计算效率较高,适用于处理非凸、高维空间的路径规划问题。 然而,RRT算法也存在一些局限性:

  • 随机性导致路径质量不稳定: RRT算法的路径质量受随机采样影响较大,获得的路径通常不是最优的,且路径长度、平滑度等指标可能存在较大的波动。

  • 对初始点的敏感性: RRT算法的性能受初始点位置影响较大。如果初始点位于复杂环境中,算法可能需要更多的迭代次数才能找到可行路径。

  • 探索速度慢: 在狭窄通道或复杂环境中,RRT算法的探索速度可能较慢,难以快速找到可行路径。

为了克服RRT算法的局限性,研究者提出了许多改进策略,包括:

  • RRT*算法: RRT算法在RRT算法的基础上引入了重连接机制,即在添加新节点时,不仅选择距离最近的父节点,还会考虑周围节点作为父节点的可能性,并选择代价最小的连接方式。这使得RRT算法能够找到渐近最优的路径。

  • Informed RRT*算法: Informed RRT*算法利用已知最优路径的信息,缩小搜索空间,加速算法的收敛速度。该算法维护一个椭圆区域,椭圆的焦点为起始点和目标点,长轴长度为当前已知最优路径的长度。只在椭圆区域内进行采样和拓展,从而提高算法的效率。

  • RRT-Connect算法: RRT-Connect算法同时从起始点和目标点出发,分别构建两棵RRT树。当两棵树之间存在连接时,算法成功找到一条连接起始点和目标点的路径。RRT-Connect算法在某些情况下能够更快地找到可行路径。

  • Bi-RRT算法: Bi-RRT算法与RRT-Connect算法类似,也是从起始点和目标点同时出发,分别构建两棵RRT树。但Bi-RRT算法不采用连接方式,而是采用相互拓展的方式,即每一棵树都向另一棵树的方向拓展,直到两棵树彼此接近。

除了上述改进策略,RRT算法还可以与其他优化算法相结合,例如:

  • RRT-PSO算法: RRT-PSO算法将粒子群优化(Particle Swarm Optimization, PSO)算法引入到RRT算法中,利用PSO算法对RRT树中的节点进行优化,提高路径的质量。

  • RRT-GA算法: RRT-GA算法将遗传算法(Genetic Algorithm, GA)引入到RRT算法中,利用GA算法对RRT树中的路径进行优化,提高路径的平滑度和可执行性。

RRT算法及其变种已被广泛应用于各个领域,例如:

  • 机器人路径规划: RRT算法可用于移动机器人在复杂环境中进行路径规划,例如仓库物流机器人、自动驾驶汽车等。

  • 游戏AI: RRT算法可用于游戏AI中控制角色进行路径规划,例如角色在复杂场景中躲避敌人、寻找目标等。

  • 生物分子运动规划: RRT算法可用于模拟生物分子的运动轨迹,例如蛋白质折叠、药物分子与靶点蛋白的结合等。

  • 航空航天: RRT算法可用于无人机路径规划、卫星姿态控制等。

尽管RRT算法在路径规划领域取得了显著的成果,但仍然存在一些挑战需要解决,例如:

  • 高维空间的路径规划: 在高维空间中,RRT算法的计算复杂度会显著增加,需要进一步提高算法的效率。

  • 动态环境下的路径规划: 在动态环境中,障碍物的位置会发生变化,需要RRT算法能够快速响应并重新规划路径。

  • 多目标路径规划: 在多目标路径规划问题中,需要同时考虑多个优化目标,例如最短路径、最小能耗等,需要进一步扩展RRT算法的功能。

未来,RRT算法的研究方向将主要集中在以下几个方面:

  • 提高算法的效率和鲁棒性: 通过优化采样策略、拓展机制以及连接方法,提高RRT算法的效率和鲁棒性,使其能够更好地适应复杂环境。

  • 与其他优化算法相结合: 将RRT算法与其他优化算法(例如强化学习、深度学习等)相结合,提高路径的质量和可执行性。

  • 应用于新的领域: 将RRT算法应用于新的领域,例如自动驾驶、智能制造等,解决更加复杂的路径规划问题。

⛳️ 运行结果

🔗 参考文献

[1] 张志文,刘伯威,张继园,等.麻雀搜索算法-粒子群算法与快速扩展随机树算法协同优化的智能车辆路径规划[J].中国机械工程, 2024, 35(6):993-999.

[2] 王丽丽.基于改进RRT*算法的井下巷道漫游路径规划方法[J].现代电子技术, 2024, 47(12):62-68.DOI:10.16652/j.issn.1004-373x.2024.12.011.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值