【创新未发表】基于融合t分布扰动的改进粒子群算法tPSO实现复杂山地危险模型无人机路径规划附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

无人机(Unmanned Aerial Vehicle, UAV)作为一种新兴的智能化平台,凭借其灵活机动、成本低廉、应用广泛等优势,在测绘、侦察、搜救、农业植保等领域发挥着日益重要的作用。然而,在复杂山地环境下进行无人机路径规划,面临着地形起伏大、障碍物密集、威胁源多样等诸多挑战。传统路径规划算法往往难以兼顾路径长度、安全性、可行性等多目标优化需求,容易陷入局部最优解。因此,研究一种高效、可靠的无人机路径规划方法,对于拓展无人机应用范围、保障飞行安全具有重要的现实意义和学术价值。

本文提出一种基于融合t分布扰动的改进粒子群算法(tPSO),旨在解决复杂山地危险模型下的无人机路径规划问题。该算法在传统PSO算法的基础上,引入了t分布扰动机制,有效增强了算法的全局搜索能力和跳出局部最优的能力。本文首先构建了复杂山地环境下的三维危险模型,综合考虑地形起伏、障碍物分布、威胁源威胁等因素,为无人机路径规划提供了 realistic 的场景。其次,详细阐述了tPSO算法的设计思路和实现步骤,重点介绍了融合t分布扰动的改进策略。最后,通过仿真实验验证了tPSO算法在复杂山地环境下无人机路径规划中的有效性和优越性。

1. 复杂山地危险模型构建

复杂山地环境下的无人机路径规划,需要考虑多个影响因素,包括地形起伏、障碍物分布以及潜在的威胁源。为了更真实地模拟实际飞行环境,本文构建了一个综合性的三维危险模型,该模型主要由以下几个部分组成:

  • 地形起伏模型: 采用数字高程模型(Digital Elevation Model, DEM)来描述山地地形的起伏变化。DEM数据可以从专业的测绘机构获取,也可以通过遥感影像处理生成。通过对DEM数据进行处理和插值,可以获得高精度的三维地形数据。

  • 障碍物分布模型: 山地环境中存在大量的障碍物,如山峰、树木、建筑物等。本文采用三维网格数据来表示障碍物,每个网格单元存储该区域是否存在障碍物的信息。障碍物数据可以通过人工标定或者三维建模获取。

  • 威胁源模型: 威胁源是指对无人机飞行构成潜在威胁的因素,如雷达、防空武器、恶劣天气等。本文采用概率密度函数来描述威胁源的威胁程度,威胁程度越高,无人机在该区域飞行的风险越大。威胁源的类型和威胁程度可以根据实际情况进行设置。

将以上三个模型进行叠加,可以得到一个综合的三维危险模型。该模型能够较为全面地反映复杂山地环境的特点,为无人机路径规划提供了一个 realistic 的仿真环境。

2. 融合t分布扰动的改进粒子群算法tPSO

粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,具有原理简单、易于实现、收敛速度快等优点,被广泛应用于各种优化问题。然而,传统的PSO算法也存在一些缺点,如容易陷入局部最优解、全局搜索能力不足等。为了克服这些缺点,本文提出了一种融合t分布扰动的改进粒子群算法tPSO。

tPSO算法的基本思想是在传统PSO算法的基础上,引入t分布扰动机制,对粒子的速度和位置进行扰动,从而增强算法的全局搜索能力和跳出局部最优的能力。具体步骤如下:

  • 初始化种群: 随机生成一定数量的粒子,每个粒子代表一条可能的路径。粒子的位置表示路径的关键点坐标,粒子的速度表示路径关键点坐标的变化速率。

  • 计算适应度值: 根据预先设定的目标函数,计算每个粒子的适应度值。目标函数通常包括路径长度、安全距离、飞行高度等因素,旨在找到一条安全、高效的飞行路径。

  • 更新粒子速度和位置: 根据以下公式更新粒子的速度和位置:

    v_i(t+1) = w * v_i(t) + c_1 * rand() * (pbest_i - x_i(t)) + c_2 * rand() * (gbest - x_i(t)) + t_disturb(t)

    x_i(t+1) = x_i(t) + v_i(t+1)

    其中,v_i(t) 表示粒子 i 在 t 时刻的速度,x_i(t) 表示粒子 i 在 t 时刻的位置,w 表示惯性权重,c_1 和 c_2 表示学习因子,rand() 表示 0 到 1 之间的随机数,pbest_i 表示粒子 i 的历史最优位置,gbest 表示全局最优位置,t_disturb(t) 表示 t 分布扰动。

  • t 分布扰动: t 分布是一种概率分布,具有较厚的尾部,可以产生较大的随机数。本文利用 t 分布的特性,对粒子的速度进行扰动,从而增加算法的全局搜索能力。t_disturb(t) 的计算公式如下:

    t_disturb(t) = sigma * t_rv(df)

    其中,sigma 表示扰动强度,t_rv(df) 表示自由度为 df 的 t 分布随机数。扰动强度 sigma 可以随着迭代次数的增加而减小,以保证算法的收敛性。

  • 边界处理: 对粒子的位置进行边界处理,确保路径的关键点坐标在合理的范围内。

  • 判断是否满足终止条件: 如果满足终止条件(如达到最大迭代次数或找到满意的解),则停止迭代,输出最优解。否则,返回步骤 2,继续迭代。

通过引入 t 分布扰动机制,tPSO 算法能够有效地增强全局搜索能力,避免陷入局部最优解,从而找到更优的无人机飞行路径。

3. 仿真实验与结果分析

为了验证 tPSO 算法在复杂山地环境下无人机路径规划中的有效性,本文进行了仿真实验。实验环境为一个三维山地场景,地形数据来源于真实 DEM 数据,障碍物和威胁源根据实际情况进行设置。实验目标是找到一条从起点到终点的安全、高效的无人机飞行路径。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值