✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着自主技术的日益成熟,对自主系统的研究需求也日益增长。特别地,自主水面艇(ASV)因其在提高安全性和效率方面的潜在优势而备受关注。ASV可以定义为无人船只,其可以在各种复杂环境中执行任务而无需任何人工干预。ASV已经在海洋研究、海洋资源勘探、军事、海上运输和救援等领域展示了其价值(Zhou et al. 2020)。
路径规划是实现ASV自动化的关键技术之一,也是ASV执行复杂任务的重要保障(Fossen 2011; Lazarowska 2015)。近年来,对海上安全航行和路径规划技术的需求不断增长。根据欧洲海事安全局(EMSA)收集的《2019年海洋事故和事件年度概述》(EMSA 2019),在2011年至2018年期间,超过54%的船舶事故是航行事故。此外,65.8%的事故归因于人为因素。通过引入路径规划算法,可以大幅降低航行事故的发生率和人为失误造成的损失。
开发具有高效计算能力、鲁棒性和更高质量解决方案的路径规划算法是近年来研究的热点。Sang et al. (2021) 提出了一种基于传统人工势场的多目标子点人工势场(MTAPF)算法。该算法通过切换目标点,可以大大降低无人艇陷入局部最小值点的概率。Xie et al. (2019) 通过结合标量模式、自适应步长和惩罚模式改进了A*算法。与真实案例轨迹相比,该算法与障碍物的距离增加了三倍以上,且路径长度也大大缩短。Liang et al. (2020) 提出了一种领导者顶点蚁群优化算法(LVACO),并将其应用于ASV控制系统。仿真结果表明,LVACO算法提供的路径更有效,更适合船舶导航。Zhong et al. (2021) 也进行了尝试,他们将粒子群优化算法与基于方向角的编组策略相结合。改进后的算法在收敛时间和路径长度方面表现出更好的性能。为了将算法应用于船舶自主导航,Lazarowska (2020) 使用了离散人工势场法,并结合了国际海上避碰规则(COLREGs)。该方法已通过使用来自训练船Horyzont II的真实导航数据进行了验证。Guo et al. (2020) 提出了一种混沌和共享学习粒子群优化(CSPSO)算法,以解决多目标路径规划问题。仿真实验验证了CSPSO算法和避碰规则的有效性和合理性。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
function [ dist ] = distance(n,ppValue,randomValue )
%输入参数:
%n----矩阵的维数
% ppValue----当前位置
% randomValue----任意位置
% 输出参数:
% dist----两个元素之间的距离
[pprow,ppcol] = ind2sub(n,ppValue);%栅格中的数值转化成数组行列值
[pp_array_x,pp_array_y] = arry2orxy(n,pprow,ppcol);%将矩阵下标转换为坐标轴xy形式
[randrow,randcol] = ind2sub(n,randomValue);%栅格中的数值转化成数组行列值
[rand_array_x,rand_array_y] = arry2orxy(n,randrow,randcol);%将矩阵下标转换为坐标轴xy形式
dist = sqrt((pp_array_x-rand_array_x)^2+(pp_array_y-rand_array_y)^2);
end
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇