✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
无线传感器网络(WSN)作为物联网的重要组成部分,在环境监测、智能农业、智能家居等领域发挥着越来越重要的作用。然而,WSN的能量供应问题一直是制约其广泛应用的关键瓶颈。传统的一次性电池供电方式不仅成本高昂,维护困难,还会对环境造成污染。因此,无线充电技术应运而生,为WSN的可持续运行提供了新的可能性。而无人机(UAV)作为灵活的空中平台,被视为无线充电传感器网络(WCRSN)最有前景的能量供应载体之一。然而,如何高效调度无人机,优化充电路径,确保WCRSN的可持续运行,仍面临诸多挑战。本文将深入探讨一种创新的解决方案,即基于总线网络辅助的无人机调度策略,旨在提升WCRSN的可持续充电效率。
首先,我们需要理解传统无人机调度策略的局限性。传统的无人机调度策略通常基于两种方法:一是全局优化方法,例如线性规划、遗传算法等,尝试找到最优的充电路径,以最大化网络寿命。然而,这些方法往往需要掌握整个网络的全局信息,计算复杂度高,难以适应大规模、动态变化的WSN。二是局部优化方法,例如贪心算法、最短路径算法等,根据节点的需求和位置,逐个或局部地选择充电对象。这类方法虽然计算效率高,但容易陷入局部最优解,无法保证全局的能量供应效率。此外,传统方法通常忽略了WSN的网络结构,无法充分利用网络的信息来指导无人机的调度。
总线网络辅助的无人机调度策略,则通过引入总线网络的概念,有效弥补了传统方法的不足。该策略的核心思想是,在WSN中部署一条或多条物理或逻辑上的“总线”,传感器节点通过总线将自身的能量需求信息传递给无人机,无人机根据总线上的信息进行调度和充电。这种策略的优势主要体现在以下几个方面:
1. 减少信息收集成本,提升调度效率: 传统的无人机调度需要无人机主动探测或查询传感器节点的能量状态,这会消耗大量的无人机能量和时间。而通过总线网络,传感器节点可以将自身的能量需求信息主动广播到总线上,无人机只需监听总线上的信息,即可快速了解整个网络的能量状态。这种被动式信息收集方式极大地降低了无人机的能量消耗,缩短了调度周期,提高了调度效率。
2. 降低计算复杂度,适应动态变化: 由于总线网络提供了全局的能量需求信息,无人机可以基于这些信息,采用更简单的调度算法,例如基于能量阈值的调度策略,优先为能量低于阈值的节点充电。这种简单有效的算法可以有效降低计算复杂度,适应WSN的动态变化,保证WCRSN的稳定运行。
3. 优化充电路径,提升能量利用率: 总线网络可以提供节点之间的连接关系,无人机可以利用这些连接关系,规划更高效的充电路径。例如,无人机可以沿着总线飞行,依次为总线附近的节点充电,从而减少不必要的飞行距离,提升能量利用率。此外,通过总线网络,无人机还可以了解节点的地理位置信息,结合节点之间的距离和能量需求,制定更合理的充电计划。
4. 实现能量公平性,延长网络寿命: 通过总线网络,无人机可以更精确地了解各个节点的能量状态,从而实现更公平的能量分配。例如,无人机可以采用基于公平性的调度算法,优先为能量较低的节点充电,从而避免某些节点因能量耗尽而过早失效,延长整个网络的寿命。
为了进一步提升总线网络辅助无人机调度的性能,还可以考虑以下几个方面的优化:
- 总线网络的拓扑优化:
总线网络的拓扑结构直接影响信息的传输效率和可靠性。应该根据WSN的部署环境和节点分布,选择合适的总线网络拓扑结构,例如线性拓扑、星型拓扑、树型拓扑等。此外,还可以采用冗余设计,例如多条总线或多个中继节点,提高总线网络的可靠性。
- 无人机调度算法的优化:
可以结合WSN的特定应用场景和能量需求,设计更高效的无人机调度算法。例如,可以采用基于预测的调度策略,根据节点的历史能量消耗数据,预测未来的能量需求,提前进行充电,避免节点能量耗尽。
- 能量感知的总线网络:
可以将能量感知技术集成到总线网络中,让总线网络不仅能够传递能量需求信息,还能感知节点的能量状态,从而为无人机提供更准确的能量信息。
- 多无人机协同调度:
对于大规模的WSN,单架无人机的充电能力可能无法满足需求。可以采用多无人机协同调度策略,多架无人机分工合作,同时为不同的区域或节点充电,从而提高充电效率,缩短充电周期。
总而言之,基于总线网络辅助的无人机调度策略,为WCRSN的可持续充电提供了一种创新的解决方案。该策略通过引入总线网络,降低了信息收集成本,提升了调度效率,优化了充电路径,实现了能量公平性,有效延长了WSN的寿命。未来的研究方向应该集中在总线网络拓扑优化、无人机调度算法优化、能量感知的总线网络以及多无人机协同调度等方面,进一步提升总线网络辅助无人机调度策略的性能,推动WCRSN在各个领域的广泛应用。
需要注意的是,总线网络的构建和维护也会带来一定的成本,需要在实际应用中综合考虑。然而,与传统一次性电池供电方式相比,总线网络辅助无人机调度策略在长期来看,能够降低运行成本,提高能源利用率,并且更加环保。因此,该策略具有广阔的应用前景,值得进一步深入研究和推广。
⛳️ 运行结果
🔗 参考文献
[1]周福辉,张祥,陈良兵,等.无人机辅助无线充电边缘计算网络的资源分配方法.CN201810762122.2[2025-02-24].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇