【地震学】基于BPT、ART和SIRT算法对VSP、井下和井间等地震方法进行简单的模型反演附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要: 地震反演是利用地震数据推断地下介质物理性质的重要手段。垂直地震剖面(VSP)、井下地震和井间地震等方法具有较高的分辨率和信噪比,在精细油气勘探和工程地质调查中得到广泛应用。本文旨在探讨基于块状射线追踪(BPT)、代数重建技术(ART)和同步迭代重建技术(SIRT)等算法,对VSP、井下地震和井间地震数据进行简单模型反演的应用及优缺点。通过对这些经典反演算法的分析,为实际资料处理和解释提供理论基础和方法参考。

关键词: 地震反演,VSP,井下地震,井间地震,BPT,ART,SIRT

1. 引言

地震反演作为地球物理学领域的核心内容之一,其目标是从地震观测数据中提取尽可能多的关于地下地质结构的物理信息,如速度、密度、吸收衰减等参数。这些参数对于油气勘探、工程地质调查、矿产资源开发以及地球动力学研究都至关重要。

垂直地震剖面(VSP)、井下地震和井间地震是利用钻孔进行的地震勘探方法。与地面地震相比,它们具有更高的分辨率和信噪比,能更准确地反映井旁及井间地层的精细结构。VSP通常在井中放置检波器,地面激发;井下地震在井中放置震源和检波器;而井间地震则在两口或多口井中分别放置震源和检波器。这些方法采集的数据种类丰富,包括直达波、反射波、多次波、转换波等,为精细地质建模和反演提供了丰富的信息。

然而,地震反演是一个非线性、不适定的逆问题,需要选择合适的算法和约束条件才能获得稳定、可靠的结果。目前,广泛应用的地震反演算法包括迭代反演、最小二乘反演、全波形反演等。本文将重点关注基于块状射线追踪(BPT)、代数重建技术(ART)和同步迭代重建技术(SIRT)等算法,针对VSP、井下地震和井间地震等方法进行简单模型反演的原理、应用和局限性进行分析。这些算法在计算效率和稳定性方面各具特点,适用于不同复杂程度的地质模型。

2. 基于块状射线追踪(BPT)的反演

块状射线追踪(BPT)是一种常用的射线追踪方法,尤其适用于速度模型变化较为平缓的情况。该方法将研究区域划分为一系列网格,每个网格内的速度视为常数。射线在网格内以直线传播,通过相邻网格时根据斯涅尔定律进行折射。

在基于BPT的反演过程中,首先需要构建一个初始速度模型。然后,通过射线追踪计算震源到检波器的理论走时。将理论走时与实际观测走时进行比较,得到走时残差。基于走时残差,采用迭代算法对速度模型进行修正。迭代过程重复进行,直到走时残差达到预定的收敛标准。

BPT反演的优点:

  • 计算效率高:

     BPT算法简单,易于实现,计算速度快,适用于大规模数据处理。

  • 对初始模型要求不高:

     相对于其他射线追踪算法,BPT对初始速度模型的精度要求较低。

BPT反演的缺点:

  • 精度受限:

     BPT算法假设网格内速度恒定,忽略了速度的连续变化,因此精度受到网格大小的限制。当速度梯度较大时,BPT算法可能产生较大的误差。

  • 不适用于复杂模型:

     BPT算法在处理速度变化剧烈的复杂模型时,容易出现射线追踪失败或计算精度下降的问题。

BPT在VSP、井下地震和井间地震中的应用:

BPT算法常用于VSP数据的初至走时反演,可以快速建立一个初步的速度模型。通过联合地面地震和VSP数据,BPT可以用于构建更准确的近地表速度模型。在井下地震和井间地震中,BPT可以用于确定井间速度结构,尤其是在井距较远,速度变化相对平缓的情况下。

3. 基于代数重建技术(ART)的反演

代数重建技术(ART)是一种迭代重建算法,广泛应用于医学成像、地球物理勘探等领域。其基本思想是将反演问题转化为求解一个线性方程组,然后通过迭代算法对方程组进行求解。

在ART反演中,首先将研究区域离散化为一系列单元,每个单元对应一个速度值。然后,根据射线路径和单元之间的关系,建立一个大型线性方程组:

A * v = t  

其中,A是射线路径矩阵,表示射线穿过每个单元的距离;v是速度向量,表示每个单元的速度值;t是走时向量,表示每条射线的走时。

ART算法通过迭代更新速度向量v,使得A * vt之间的误差逐渐减小。每次迭代,选择一条射线,计算该射线的理论走时,并与实际观测走时进行比较。然后,根据走时残差,对射线路径上的单元速度进行修正。修正公式如下:

v(i) = v(i) + ω * (t(j) - A(j, :) * v) * A(j, i) / sum(A(j, :).^2)  

其中,v(i)是第i个单元的速度,t(j)是第j条射线的走时,A(j, i)是射线路径矩阵中对应于第j条射线和第i个单元的元素,ω是松弛因子。

ART反演的优点:

  • 灵活性高:

     ART算法可以灵活地处理复杂的几何结构和速度模型。

  • 易于加入先验信息:

     可以在迭代过程中加入先验信息,如速度范围、地质约束等,提高反演结果的稳定性。

⛳️ 运行结果

🔗 参考文献

[1] 皮开荣,邓专.改进型SIRT法进行层析成像反演的研究与应用[J].水力发电, 2008, 34(7):3.DOI:CNKI:SUN:SLFD.0.2008-07-030.

[2] 皮开荣.改进型SIRT法进行CT反演的应用[J].物探装备, 2008, 18(5):4.DOI:CNKI:SUN:WTZB.0.2008-05-012.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值