【状态估计】基于拓展卡尔曼滤波的自力车建立数学模型和状态估计器附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

自平衡车,作为一种新兴的个人交通工具,因其便携、灵活等优点而备受关注。其核心技术在于精确的状态估计和有效的控制算法,以维持车辆在动态环境下的平衡。其中,状态估计至关重要,它为控制系统提供准确的状态信息,从而实现精准的平衡控制。本文将探讨基于拓展卡尔曼滤波(Extended Kalman Filter, EKF)的自平衡车数学建模与状态估计器设计,详细阐述建模过程、滤波器构建以及性能分析,旨在为自平衡车的控制系统设计提供理论依据和实践指导。

一、自平衡车的数学建模

精确的数学模型是状态估计的基础。自平衡车可以抽象为一个倒立摆系统,其运动受到重力、电机驱动力以及各种摩擦力的影响。为了简化分析,我们做出以下假设:

  1. 车辆在二维平面内运动,忽略侧向运动和扭转。

  2. 电机响应迅速,忽略电机动力学。

  3. 轮胎与地面之间为纯滚动,忽略滑动。

  4. 重心位于车辆的中心线上。

基于以上假设,我们可以建立自平衡车的非线性动力学模型。定义以下状态变量:

  • θ:车身倾角,表示车身与垂直方向的夹角。

  • ω:车身角速度,表示车身倾角的变化率。

  • φ:轮子角度,表示轮子的旋转角度。

  • v:车速,表示车辆的水平移动速度。

根据牛顿第二定律和力矩平衡原理,可以得到以下状态方程:

  • 角度方程:

     

    css

    J * d²θ/dt² = m * g * l * sin(θ) + τ - b * ω  

    其中:

    • J: 车身转动惯量。

    • m: 车身质量。

    • g: 重力加速度。

    • l: 重心到轮子的垂直距离。

    • τ: 电机产生的扭矩。

    • b: 阻尼系数。

  • 轮子角度方程:

     

    ini

    r * dφ/dt = v  

    其中:

    • r: 轮子半径。

  • 速度方程:

     

    scss

    (M + m) * dv/dt = τ/r - f * v - m * l * ω * cos(θ) * dθ/dt - m * l * sin(θ) * d²θ/dt²  

    其中:

    • M: 车轮和电机总质量。

    • f: 摩擦力系数。

将上述微分方程组转化为状态空间表达式:

 

scss

x(t) = [θ, ω, φ, v]^T  
ẋ(t) = f(x(t), u(t))  

其中:

  • x(t): 状态向量。

  • u(t): 控制输入,通常为电机电压或扭矩。

  • f(x(t), u(t)): 非线性状态函数,由上述微分方程组导出。

二、拓展卡尔曼滤波器(EKF)的设计

由于自平衡车的动力学模型是非线性的,直接应用标准卡尔曼滤波会产生较大的误差。因此,需要使用拓展卡尔曼滤波(EKF)来处理非线性问题。EKF通过对非线性函数进行一阶泰勒展开,将其线性化,然后应用标准卡尔曼滤波算法进行状态估计。

EKF的主要步骤如下:

  1. 状态预测: 利用上一时刻的状态估计值和控制输入,预测当前时刻的状态:

     

    scss

    x̂(k|k-1) = f(x̂(k-1|k-1), u(k-1))  
    P(k|k-1) = A(k-1) * P(k-1|k-1) * A(k-1)^T + Q(k-1)  

    其中:

    • x̂(k|k-1): k时刻的状态预测值。

    • x̂(k-1|k-1): k-1时刻的状态估计值。

    • P(k|k-1): k时刻的预测误差协方差矩阵。

    • P(k-1|k-1): k-1时刻的估计误差协方差矩阵。

    • A(k-1): 状态转移矩阵,是f(x(t), u(t))对x(t)的雅可比矩阵,在x̂(k-1|k-1)处计算。

    • Q(k-1): 过程噪声协方差矩阵,表示模型误差。

  2. 观测预测: 根据状态预测值,预测当前时刻的观测值:

     

    scss

    ẑ(k|k-1) = h(x̂(k|k-1))  

    其中:

    • ẑ(k|k-1): k时刻的观测预测值。

    • h(x): 观测函数,描述状态向量与观测值之间的关系。例如,如果使用陀螺仪测量角速度,加速度计测量倾角,则h(x) = [θ, ω]^T。

  3. 卡尔曼增益计算: 计算卡尔曼增益,用于权衡预测值和观测值的可信度:

     

    scss

    K(k) = P(k|k-1) * H(k)^T * (H(k) * P(k|k-1) * H(k)^T + R(k))^(-1)  

    其中:

    • K(k): k时刻的卡尔曼增益矩阵。

    • H(k): 观测矩阵,是h(x)对x的雅可比矩阵,在x̂(k|k-1)处计算。

    • R(k): 观测噪声协方差矩阵,表示传感器噪声。

  4. 状态更新: 根据实际观测值和卡尔曼增益,更新状态估计值:

     

    scss

    x̂(k|k) = x̂(k|k-1) + K(k) * (z(k) - ẑ(k|k-1))  

    其中:

    • x̂(k|k): k时刻的状态估计值。

    • z(k): k时刻的实际观测值。

  5. 协方差更新: 更新估计误差协方差矩阵:

     

    scss

    P(k|k) = (I - K(k) * H(k)) * P(k|k-1)  

    其中:

    • I: 单位矩阵。

三、自平衡车 EKF 的具体实现

在自平衡车的 EKF 实现过程中,需要仔细考虑以下几个方面:

  1. 传感器选择与数据融合: 自平衡车通常使用陀螺仪、加速度计和编码器等传感器来获取状态信息。陀螺仪可以测量角速度,加速度计可以测量倾角,编码器可以测量轮子角度。 为了提高状态估计的精度,需要对多种传感器的数据进行融合。 EKF 能够有效地融合多种传感器的信息,利用卡尔曼增益来权衡不同传感器的可信度。

  2. 噪声参数的标定: 过程噪声协方差矩阵 Q 和观测噪声协方差矩阵 R 是 EKF 的关键参数。 Q 描述了模型的不确定性,R 描述了传感器的不确定性。 这些参数需要通过实验数据进行标定,才能获得最佳的滤波效果。 通常,可以通过 Allan 方差分析等方法来估计传感器噪声。

  3. 状态转移矩阵 A 和观测矩阵 H 的计算: 由于状态方程和观测方程都是非线性的,需要计算状态转移矩阵 A 和观测矩阵 H。 A 是状态函数 f(x(t), u(t)) 对状态向量 x(t) 的雅可比矩阵,H 是观测函数 h(x) 对状态向量 x 的雅可比矩阵。 这些矩阵需要在线计算,因为它们依赖于当前的状态估计值。

  4. 离散化处理: 由于控制系统通常运行在离散时间内,需要将连续时间模型离散化。 可以使用欧拉法、龙格-库塔法等方法将连续时间模型转换为离散时间模型。

四、性能分析与改进方向

EKF 在自平衡车状态估计中具有广泛的应用,但其性能受到多种因素的影响。 实际应用中,需要对 EKF 的性能进行分析和改进。

  1. 收敛性分析: EKF 的收敛性是保证其稳定运行的关键。 理论上,EKF 的收敛性难以保证,但通过合理的参数选择和模型改进,可以提高其收敛性。

  2. 计算复杂度分析: EKF 的计算复杂度较高,尤其是在状态维数较高的情况下。 为了降低计算复杂度,可以使用简化的 EKF 算法,例如 UKF (Unscented Kalman Filter) 或 PF (Particle Filter)。 UKF 使用无迹变换来逼近非线性函数,PF 使用粒子来表示概率分布。 这些算法在一定程度上可以提高计算效率和估计精度。

  3. 鲁棒性分析: EKF 对模型误差和传感器噪声比较敏感。 为了提高鲁棒性,可以使用自适应 EKF 算法,该算法可以根据实际情况动态调整过程噪声协方差矩阵 Q 和观测噪声协方差矩阵 R。 此外,还可以使用抗差 EKF 算法,该算法可以抑制异常值的影响。

  4. 与其他状态估计方法的比较: 除了 EKF,还有其他状态估计方法可以应用于自平衡车,例如 UKF、PF 和互补滤波。 UKF 在非线性度较高的情况下通常比 EKF 具有更好的精度,但计算复杂度也更高。 PF 适用于非线性度更高、非高斯噪声的情况下,但计算量巨大。 互补滤波结构简单,计算量小,但精度相对较低。 根据实际应用的需求,可以选择合适的状态估计方法。

⛳️ 运行结果

🔗 参考文献

[1] 魏克新,陈峭岩.基于多模型自适应卡尔曼滤波器的电动汽车电池荷电状态估计[J].中国电机工程学报, 2012, 32(31):8.DOI:CNKI:SUN:ZGDC.0.2012-31-002.

[2] 陆丹.基于卡尔曼滤波的汽车行驶姿态的研究[D].江苏大学,2005.DOI:10.7666/d.y827227.

[3] 何磊,宗长富,赵洪辉,等.基于扩展卡尔曼滤波的电动汽车电池状态估计[C]//Proceedings of 2010 The 3rd International Conference on Power Electronics and Intelligent Transportation System(Volume 5).0[2025-03-07].

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值