✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代智能交通系统中,准确可靠地跟踪多个车辆目标是实现高级驾驶辅助系统(ADAS)、自动驾驶和交通流量控制的关键技术之一。然而,现实交通场景往往充满挑战,例如传感器噪声、目标遮挡、目标频繁出现和消失以及高密度的杂波干扰。这些因素极大地增加了多目标跟踪的难度,使得传统的跟踪算法难以满足实际应用的需求。本文将探讨如何利用扩展卡尔曼滤波(EKF)和全局最近邻(GNN)算法,在高杂波环境中实现对多个车辆目标的自适应跟踪。
一、多目标跟踪的挑战与传统方法局限性
多目标跟踪(Multiple Object Tracking, MOT)的目标是在一段连续的时间序列中,对多个运动目标进行状态估计和轨迹关联,即确定每个目标在每一帧图像中的位置、速度等信息,并将其在不同帧图像中对应的检测结果连接起来,形成完整的轨迹。然而,上述挑战使得传统的跟踪算法面临诸多问题:
- 数据关联模糊:
高密度杂波的存在使得数据关联过程更加困难。传统的最近邻方法容易将杂波误认为目标,导致轨迹漂移和目标身份混淆。
- 目标遮挡和消失:
当目标被遮挡或者离开传感器视野时,其检测结果会缺失,导致轨迹中断。如果无法正确地预测目标的状态,并及时地恢复轨迹,跟踪系统可能会丢失目标。
- 目标频繁出现和消失:
车辆在复杂的交通环境中经常出现和消失,这要求跟踪算法能够动态地管理轨迹,及时地创建新的轨迹,并优雅地结束不再存在的目标的轨迹。
- 非线性运动模型:
车辆的运动往往是非线性的,例如加速、减速和转弯等行为。传统的线性滤波器,如卡尔曼滤波(KF),在处理非线性问题时会产生较大的误差。
针对上述挑战,一些传统方法也做了尝试,例如:
- 基于卡尔曼滤波的跟踪:
卡尔曼滤波及其变体(例如扩展卡尔曼滤波)被广泛应用于目标跟踪中。然而,传统的卡尔曼滤波假设状态转移模型和观测模型都是线性的,这在实际应用中往往难以满足。
- 基于数据关联的跟踪:
最近邻算法是一种简单常用的数据关联方法,但其容易受到杂波的干扰,导致关联错误。更复杂的关联算法,例如匈牙利算法,可以解决二分图匹配问题,但在高杂波环境中性能仍然有限。
- 基于多假设跟踪(MHT)的跟踪:
MHT算法通过维护多个假设来处理数据关联的不确定性,但其计算复杂度随着目标数量和时间步数的增加而呈指数级增长,难以应用于实时场景。
二、基于EKF的单目标状态估计
为了应对车辆运动的非线性特性,本文采用扩展卡尔曼滤波(EKF)来进行单目标的状态估计。EKF通过对非线性状态转移模型和观测模型进行线性化处理,将非线性问题近似转化为线性问题,然后应用标准的卡尔曼滤波算法进行状态估计。
假设车辆的状态向量为 x = [x, y, vx, vy],其中 (x, y) 表示车辆的位置,(vx, vy) 表示车辆的速度。状态转移模型可以表示为:
x(k+1) = f(x(k), u(k)) + w(k)
其中,f(·) 是非线性状态转移函数,u(k) 是控制输入(例如加速度),w(k) 是过程噪声,服从均值为0,协方差为 Q 的高斯分布。例如,一个简单的状态转移模型可以假设车辆以恒定速度运动:
x(k+1) = x(k) + vx(k) * Δt
y(k+1) = y(k) + vy(k) * Δt
vx(k+1) = vx(k)
vy(k+1) = vy(k)
观测模型可以表示为:
z(k) = h(x(k)) + v(k)
其中,z(k) 是观测向量,h(·) 是非线性观测函数,v(k) 是观测噪声,服从均值为0,协方差为 R 的高斯分布。例如,如果传感器直接测量车辆的位置,则观测函数为:
z(k) = [x(k), y(k)]
EKF算法包含两个步骤:预测和更新。
-
预测步骤:
-
状态预测: x̂(k+1|k) = f(x̂(k|k), u(k))
-
协方差预测: P(k+1|k) = F(k) * P(k|k) * F(k)T + Q(k)
其中,F(k) 是状态转移函数的雅可比矩阵,定义为 F(k) = ∂f/∂x | x=x̂(k|k)
-
-
更新步骤:
-
卡尔曼增益: K(k+1) = P(k+1|k) * H(k+1)T * (H(k+1) * P(k+1|k) * H(k+1)T + R(k+1))-1
-
状态更新: x̂(k+1|k+1) = x̂(k+1|k) + K(k+1) * (z(k+1) - h(x̂(k+1|k)))
-
协方差更新: P(k+1|k+1) = (I - K(k+1) * H(k+1)) * P(k+1|k)
其中,H(k+1) 是观测函数的雅可比矩阵,定义为 H(k+1) = ∂h/∂x | x=x̂(k+1|k)
-
通过迭代执行预测和更新步骤,EKF可以不断地修正对车辆状态的估计,并提供状态估计的协方差矩阵,用于后续的数据关联。
三、基于全局最近邻GNN算法的数据关联
在多目标跟踪中,数据关联的目标是将当前帧的检测结果与已有的轨迹进行匹配,确定每个检测结果属于哪个目标。在高杂波环境中,传统的最近邻算法容易将杂波误认为目标,导致关联错误。为了提高数据关联的准确性,本文采用全局最近邻(Global Nearest Neighbor, GNN)算法,该算法通过优化一个全局的目标函数,选择最佳的关联方案。
GNN算法的核心是构建一个代价矩阵,该矩阵描述了每个检测结果与每个轨迹之间的匹配代价。匹配代价可以根据检测结果与轨迹的距离、运动一致性等因素来定义。例如,可以使用马氏距离来衡量检测结果与轨迹预测状态之间的距离。
除了匹配代价之外,还需要考虑一些约束条件:
- 每个检测结果最多只能与一个轨迹相关联。
- 每个轨迹最多只能与一个检测结果相关联。
- 一些检测结果可能不与任何轨迹相关联,表示新的目标出现。
- 一些轨迹可能不与任何检测结果相关联,表示目标被遮挡或者消失。
基于上述匹配代价和约束条件,数据关联问题可以转化为一个线性分配问题,可以使用匈牙利算法或者Munkres算法来求解。然而,在高杂波环境中,直接使用匈牙利算法进行全局优化仍然可能受到杂波的影响。为了进一步提高数据关联的鲁棒性,本文结合了卡尔曼滤波提供的状态估计协方差信息,并提出了改进的GNN算法。
改进的GNN算法包含以下步骤:
- 预处理:
对检测结果进行预处理,去除明显不属于目标的杂波。例如,可以根据检测结果的置信度或者形状特征进行过滤。
- 计算匹配代价:
使用卡尔曼滤波预测的轨迹状态和协方差信息,计算每个检测结果与每个轨迹之间的马氏距离,作为匹配代价。
- 门限过滤:
为了减少计算量,可以设置一个距离门限,将距离大于门限的匹配对过滤掉。
- 全局优化:
使用匈牙利算法对剩余的匹配对进行全局优化,找到最佳的关联方案。
- 轨迹管理:
根据关联结果更新轨迹的状态。对于没有关联到任何检测结果的轨迹,可以将其标记为“可能消失”,如果连续几帧都没有关联到检测结果,则将其删除。对于没有关联到任何轨迹的检测结果,可以创建新的轨迹。
⛳️ 运行结果
🔗 参考文献
[1] 吴伟,王东进,陈卫东.密集杂波环境下多目标跟踪算法[J].现代雷达, 2007, 29(2):6.DOI:CNKI:SUN:XDLD.0.2007-02-004.
[2] 李秋燕.基于数据关联算法的汽车主动防撞预警系统多目标跟踪研究[D].吉林大学[2025-03-09].DOI:CNKI:CDMD:2.1015.599519.
[3] 赵梅.基于模糊逻辑控制的单脉冲雷达测距算法改进[J].计算机仿真, 2008, 25(11):5.DOI:10.3969/j.issn.1006-9348.2008.11.012.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇