【状态估计】基于粒子滤波和卡尔曼滤波的锂离子电池放电时间预测与使用特征研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

锂离子电池作为一种能量密度高、循环寿命长、自放电率低的储能设备,在便携式电子设备、电动汽车、储能系统等领域得到了广泛的应用。然而,锂离子电池的性能会随着使用时间和循环次数的增加而衰退,电池容量降低,内阻增大,这直接影响到设备的可靠性和安全性。因此,准确预测锂离子电池的剩余放电时间(Remaining Discharge Time, RDT)至关重要,能够有效地提高电池管理系统的智能化水平,延长电池的使用寿命,并为用户提供更准确的设备使用信息。

本文旨在研究基于粒子滤波(Particle Filter, PF)和卡尔曼滤波(Kalman Filter, KF)两种状态估计方法的锂离子电池放电时间预测,并探讨影响电池性能的使用特征。通过构建合适的电池模型,结合电池的使用数据,利用粒子滤波和卡尔曼滤波算法对电池状态进行估计,进而预测其剩余放电时间。同时,分析不同放电倍率、工作温度和充电策略等使用特征对电池性能的影响,为电池管理策略的优化提供理论依据。

一、 锂离子电池模型构建

准确的电池模型是状态估计和RDT预测的基础。目前常用的电池模型包括电化学模型、等效电路模型和数学模型。电化学模型能够更深入地描述电池内部复杂的电化学反应过程,但计算复杂度高,不利于在线应用。等效电路模型结构简单,参数易于辨识,在工程应用中得到了广泛的应用。数学模型则通过建立经验公式来描述电池的充放电特性,精度较低,适用性较差。

本文选择基于等效电路模型的锂离子电池模型。该模型通常由一个理想电压源(Voc)和一个内阻(R)串联组成,更复杂的模型还包括RC环节,以模拟电池的极化效应。等效电路模型的关键在于参数的辨识。电池内阻R会随着温度、放电深度(Depth of Discharge, DOD)和循环次数的变化而变化。因此,需要建立内阻R与这些因素的函数关系。可以采用实验方法,如脉冲电流法或交流阻抗谱法,来测量不同条件下的内阻值,然后通过回归分析拟合出内阻R的表达式。

二、 状态估计方法:粒子滤波与卡尔曼滤波

状态估计是指利用系统输入输出数据对系统内部状态进行估计的过程。在锂离子电池RDT预测中,电池的状态通常包括电池的荷电状态(State of Charge, SOC)、内阻R和容量等。

2.1 卡尔曼滤波

卡尔曼滤波是一种基于线性高斯假设的最优递归滤波器,它能够根据系统模型和测量数据,以递推的方式估计系统的状态。卡尔曼滤波的核心思想是利用系统状态方程和测量方程,通过预测和更新两个步骤不断逼近真实状态。

在电池状态估计中,可以将电池模型作为状态方程,电池的端电压和电流作为测量方程。然而,锂离子电池的充放电过程往往是非线性的,传统的卡尔曼滤波难以直接应用。因此,需要采用扩展卡尔曼滤波(Extended Kalman Filter, EKF)或无迹卡尔曼滤波(Unscented Kalman Filter, UKF)等非线性卡尔曼滤波方法。EKF通过泰勒展开将非线性函数线性化,但存在截断误差,可能导致估计精度下降。UKF则采用无迹变换来逼近非线性函数的概率分布,避免了线性化过程,具有更高的精度和鲁棒性。

2.2 粒子滤波

粒子滤波是一种基于蒙特卡洛模拟的状态估计方法。它通过一组带有权重的随机样本(粒子)来近似系统的状态分布。粒子滤波不需要线性化,能够处理非线性、非高斯系统,因此在电池状态估计中具有优势。

粒子滤波的步骤包括初始化、预测、更新和重采样。初始化阶段,随机生成一组粒子,每个粒子代表系统的一个可能状态。预测阶段,根据系统模型预测粒子的未来状态。更新阶段,根据测量数据更新粒子的权重,权重越大,说明该粒子越接近真实状态。重采样阶段,根据粒子的权重复制权重高的粒子,丢弃权重低的粒子,保持粒子数量不变。

粒子滤波的精度和计算复杂度与粒子数量有关。粒子数量越多,估计精度越高,但计算负担也越大。因此,需要根据实际情况选择合适的粒子数量。

三、 基于状态估计的RDT预测

获得准确的电池状态估计后,即可进行RDT预测。RDT是指电池从当前状态放电至截止电压所需要的时间。

预测RDT的一种方法是基于模型预测。根据电池模型和当前状态,模拟电池的放电过程,直至电池电压达到截止电压,记录所需时间即为RDT。另一种方法是基于数据驱动的预测。利用历史数据训练预测模型,如神经网络、支持向量机等,然后根据当前状态预测RDT。

结合状态估计和RDT预测,可以实现对电池剩余寿命的动态评估。随着电池的使用,电池的性能会不断衰退,RDT也会不断变化。通过定期进行状态估计和RDT预测,可以及时了解电池的健康状况,并采取相应的措施,如调整充放电策略,更换电池等。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值