【无人机】基于遗传算法调整PID控制器增益研究【无人机(UAV)上使用的PID控制器】附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要: 无人机(UAV)的稳定性和精确控制是其广泛应用的关键因素。PID控制器由于其结构简单、易于实现和鲁棒性好等优点,被广泛应用于无人机的姿态控制和位置控制中。然而,传统的PID参数整定方法往往依赖于经验或者试错,难以获得最优的控制性能。本文探讨了基于遗传算法(GA)的PID控制器增益优化方法在无人机控制中的应用。通过建立无人机的运动学和动力学模型,并将PID控制器嵌入其中,利用遗传算法搜索最优的PID参数组合,以期提高无人机的控制精度、稳定性和响应速度。本文重点研究了遗传算法的编码方式、适应度函数的设计、选择、交叉和变异算子的选择,并探讨了遗传算法参数对优化结果的影响。通过仿真实验验证了基于遗传算法优化的PID控制器在无人机控制中的有效性和优越性。

1. 引言

近年来,随着微电子技术、传感器技术、通信技术和人工智能的快速发展,无人机技术得到了广泛的应用,涵盖了农业植保、电力巡检、物流配送、灾害救援、环境监测和国防安全等多个领域。无人机的飞行控制系统是其核心组成部分,直接决定了无人机的安全性、稳定性和执行任务的效率。

PID控制器作为一种经典的控制算法,因其结构简单、参数易于调整、鲁棒性好等优点,被广泛应用于无人机的姿态控制和位置控制中。PID控制器通过调节比例(P)、积分(I)和微分(D)三个参数,实现对控制对象输出的精确控制。然而,对于复杂的非线性系统,如无人机,手动调整PID参数往往需要耗费大量时间和精力,并且难以获得最优的控制性能。传统的PID参数整定方法,例如Ziegler-Nichols方法和经验法,通常依赖于经验和试错,无法保证控制系统的全局最优性。

因此,研究一种能够自动、高效地调整PID参数的方法具有重要的现实意义。遗传算法(GA)是一种模拟生物进化过程的全局优化算法,具有较强的鲁棒性和全局搜索能力。本文研究了基于遗传算法的PID控制器增益优化方法,旨在利用遗传算法自动搜索最优的PID参数组合,从而提高无人机的控制精度、稳定性和响应速度。

2. 无人机建模与PID控制

2.1 无人机运动学与动力学模型

为了实现无人机的精确控制,首先需要建立其运动学和动力学模型。无人机的运动学模型描述了无人机的位置、速度、姿态和角速度之间的关系,而动力学模型描述了无人机受到的力矩和加速度之间的关系。

本文采用四旋翼无人机作为研究对象,并假设无人机为刚体,忽略空气阻力、地面效应等因素的影响,建立其六自由度运动模型。该模型可以分为位置子模型和姿态子模型。

  • 位置子模型:

     描述了无人机在三维空间中的位置变化。

  • 姿态子模型:

     描述了无人机绕三个轴(滚转、俯仰和偏航)的旋转变化。

这两个子模型相互耦合,通过旋转矩阵将机体坐标系下的力矩转换到世界坐标系,从而影响无人机的位置变化。具体的建模过程涉及到坐标系的定义、旋转矩阵的推导、牛顿-欧拉方程的应用等,这里不再赘述。

2.2 PID控制器设计

PID控制器是无人机控制系统中最常用的控制器之一。其基本原理是根据给定值与实际值之间的偏差,计算出比例、积分和微分三个部分的控制量,并将它们相加,作为控制输出。

无人机的姿态控制和位置控制通常采用串级PID控制结构。例如,在姿态控制中,内环PID控制器控制角速度,外环PID控制器控制姿态角。内环的输出作为外环的输入,通过内外环的协调控制,实现无人机的姿态稳定。

PID控制器的数学表达式如下:

 

scss

u(t) = Kp * e(t) + Ki * ∫e(τ)dτ + Kd * de(t)/dt  

其中:

  • u(t) 为控制输出

  • e(t) 为偏差,即给定值与实际值之差

  • Kp 为比例增益

  • Ki 为积分增益

  • Kd 为微分增益

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值