【无人机】非对称多旋翼无人机线性控制的建模、仿真与实现附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无人机(UAV)作为一种新兴的智能载体,凭借其灵活性、低成本、易操作等优势,在诸多领域展现出巨大的应用潜力,如航拍摄影、农业植保、物流运输、灾害救援等。在众多无人机构型中,多旋翼无人机由于其结构简单、易于操控、垂直起降等特点,成为研究和应用的主流。然而,传统的多旋翼无人机通常采用对称布局,这在一定程度上限制了其机动性和适用性。为了提升无人机的性能,非对称多旋翼无人机应运而生。相较于对称结构,非对称构型能够赋予无人机更强的灵活性和适应性,例如通过调整旋翼数量、位置、倾角等参数,可以优化无人机的推重比、扭矩特性、稳定性和控制性能。本文将深入探讨非对称多旋翼无人机的建模、线性控制器的设计、仿真验证以及实现过程,旨在为非对称多旋翼无人机的实际应用提供理论基础和技术支持。

一、非对称多旋翼无人机建模

精确的数学模型是无人机控制系统设计的基础。非对称多旋翼无人机的建模过程相对复杂,需要充分考虑其非对称性带来的影响。通常,我们可以采用牛顿-欧拉方法或拉格朗日方法建立无人机的动力学模型。

  1. 坐标系定义: 首先需要建立合适的坐标系。通常采用惯性坐标系(E系)和机体坐标系(B系)。惯性坐标系固定于地面,用于描述无人机的绝对位置和姿态;机体坐标系固定于无人机机身,用于描述无人机相对于自身的运动状态。

  2. 动力学方程: 动力学方程描述了无人机所受外力与运动状态之间的关系。根据牛顿第二定律,可以得到无人机的平动方程:

    m * v_dot = F_G + F_T + F_D  

    其中,m为无人机质量,v_dot为无人机线速度的导数,F_G为重力,F_T为旋翼产生的推力合力,F_D为空气阻力。

  3. 姿态动力学方程: 姿态动力学方程描述了无人机所受力矩与姿态变化之间的关系。根据欧拉转动定律,可以得到无人机的转动方程:

    I * ω_dot + ω × (I * ω) = M_G + M_T + M_D  

    其中,I为无人机惯性矩阵,ω_dot为无人机角速度的导数,ω为无人机角速度,M_G为重力力矩,M_T为旋翼产生的力矩合力,M_D为空气阻力力矩。

  4. 旋翼模型: 精确的旋翼模型是无人机模型的重要组成部分。旋翼产生的推力和力矩与旋翼的转速密切相关。通常,我们可以采用叶素理论(Blade Element Theory, BET)或者动量理论(Momentum Theory)建立旋翼模型。在非对称构型中,各个旋翼的位置、倾角等参数不同,因此需要针对每个旋翼单独建模,并进行力矩合成。

  5. 空气阻力模型: 空气阻力对无人机的运动影响不可忽略。空气阻力的大小与无人机的速度和姿态相关。可以采用经验公式或者空气动力学软件进行建模。

  6. 非对称性考虑: 针对非对称构型,需要特别注意以下几点:

    • 质心位置偏移:

       非对称布局可能导致无人机质心位置偏离几何中心,需要准确计算质心位置,并在建模中进行修正。

    • 惯性矩阵非对角化:

       非对称布局可能导致无人机的惯性矩阵变为非对角矩阵,需要准确测量或估计惯性矩阵,并在动力学方程中进行考虑。

    • 旋翼力矩分配:

       非对称构型的旋翼力矩分配更加复杂,需要设计合理的力矩分配算法,以保证无人机的稳定性和可控性。

二、线性控制器的设计

由于非对称多旋翼无人机的动力学模型高度非线性,直接进行控制设计比较困难。为了简化设计过程,通常采用线性化方法,将非线性模型在某个平衡点附近线性化,然后设计线性控制器。

  1. 线性化: 首先需要选取一个平衡点,例如悬停状态。然后,将非线性动力学方程在平衡点附近进行泰勒展开,忽略高阶项,得到线性化模型。

  2. 状态空间表示: 将线性化模型表示成状态空间的形式:

    x_dot = Ax + Bu  
    y = Cx + Du  

    其中,x为状态向量,u为控制输入,y为输出向量,A为状态矩阵,B为输入矩阵,C为输出矩阵,D为直接传递矩阵。

  3. 控制器设计: 基于线性化模型,可以采用多种线性控制方法,例如PID控制、LQR控制、模型预测控制(MPC)等。

    • PID控制:

       PID控制是一种经典的控制方法,其原理简单、易于实现。针对无人机的姿态控制和位置控制,可以分别设计PID控制器。

    • LQR控制:

       LQR控制是一种最优控制方法,它可以通过求解Riccati方程得到最优控制律,使得系统在一定性能指标下达到最优状态。

    • 模型预测控制(MPC):

       MPC是一种基于模型的控制方法,它通过预测未来一段时间内的系统行为,然后优化控制输入,使得系统达到期望状态。MPC的优势在于可以处理约束条件,例如对旋翼转速进行限制。

  4. 力矩分配算法: 控制器计算得到的力矩需要在各个旋翼之间进行分配。对于非对称构型,需要设计合理的力矩分配算法,以保证无人机的稳定性和可控性。常用的力矩分配算法包括:

    • 伪逆方法:

       伪逆方法是一种简单的力矩分配算法,它可以通过求解旋翼推力与力矩之间的伪逆矩阵,得到各个旋翼的推力。

    • 优化方法:

       优化方法可以通过求解一个优化问题,例如最小化旋翼推力的能量消耗,或者最小化旋翼推力的偏差,得到各个旋翼的推力。

⛳️ 运行结果

🔗 参考文献

[1] 孟佳东,赵志刚.小型四旋翼无人机建模与控制仿真[J].兰州交通大学学报, 2013(1):5.DOI:10.3969/j.issn.1001-4373.2013.01.015.

[2] 江杰,冯旭光,苏建彬.四旋翼无人机仿真控制系统设计[J].电光与控制, 2015, 22(2):4.DOI:10.3969/j.issn.1671-637X.2015.02.006.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值