✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
近年来,全球气候变暖日益严重,化石能源的过度依赖带来了环境污染和能源危机。在此背景下,可再生能源(Renewable Energy Sources,RES)发电和电动汽车(Electric Vehicles,EVs)作为应对气候变化和能源转型的两大重要方向,受到了广泛的关注和研究。然而,可再生能源发电具有间歇性、波动性等特点,大规模接入电网会对电网的稳定性产生挑战。同时,电动汽车的大规模普及也将对电网的负荷特性和电力需求带来显著影响。因此,如何有效地协同调度可再生能源发电和电动汽车,以实现可再生能源的高效利用、电动汽车的灵活充电,并保障电网的安全稳定运行,成为了一个重要的研究课题。本文旨在复现并深入探讨相关硕士论文中提出的可再生能源发电与电动汽车的协同调度策略,分析其理论基础、方法实现以及性能表现,为后续的研究提供参考和借鉴。
一、 研究背景与意义
传统电网依赖于化石燃料发电,其产生的碳排放是导致气候变暖的主要原因之一。可再生能源发电,例如风力发电、光伏发电等,具有清洁、可持续的特点,被认为是替代化石燃料发电的重要选择。然而,可再生能源发电的出力受天气条件的影响较大,具有明显的间歇性和波动性,难以保证电网的稳定运行。
另一方面,电动汽车作为一种清洁的交通工具,能够有效减少燃油汽车带来的空气污染和碳排放。随着电动汽车技术的不断发展和充电基础设施的日益完善,电动汽车的市场渗透率正在快速提高。然而,电动汽车的大规模接入电网将显著增加电网的负荷需求,特别是在高峰时段,可能会导致电网的拥塞和电压下降。
因此,如何有效地协调可再生能源发电和电动汽车的运行,充分利用可再生能源发电的清洁电力,同时避免对电网造成过大的冲击,成为了一个亟待解决的问题。通过协同调度,可以将可再生能源发电的间歇性与电动汽车的灵活充电特性相结合,实现二者之间的互补互利,从而提高电网的稳定性和效率。
二、 协同调度策略的研究现状
针对可再生能源发电与电动汽车的协同调度问题,国内外学者已经开展了大量的研究工作。这些研究主要集中在以下几个方面:
-
基于价格机制的调度策略: 这类策略通过设计合理的电价机制,引导电动汽车用户在可再生能源发电出力较高时段进行充电,从而提高可再生能源的消纳能力。常见的价格机制包括实时电价、分时电价、动态电价等。通过价格信号,鼓励电动汽车用户调整充电行为,减少对电网高峰时段的压力,同时促进可再生能源的利用。
-
基于优化算法的调度策略: 这类策略通过建立优化模型,考虑可再生能源发电的预测误差、电动汽车用户的充电需求、电网的约束条件等因素,利用优化算法(如线性规划、非线性规划、混合整数规划等)求解最佳的调度方案。优化目标通常包括最小化电网的运行成本、最大化可再生能源的利用率、满足电动汽车用户的充电需求等。
-
基于智能控制的调度策略: 这类策略利用智能控制技术,例如预测控制、模型预测控制、自适应控制等,实现对可再生能源发电和电动汽车的实时调度。智能控制策略能够根据电网的实时状态和用户的需求,动态调整电动汽车的充电功率,从而提高电网的稳定性和效率。
-
基于区块链的调度策略: 近年来,区块链技术逐渐被应用到电力系统中。基于区块链的调度策略可以实现分布式能源的公平交易和安全认证,提高电力市场的透明度和可信度。电动汽车用户可以将自己的充电需求发布到区块链上,与其他用户或电力公司进行交易,从而实现更加灵活和高效的电力调度。
三、 硕士论文复现与分析
本文尝试复现的硕士论文研究了基于预测控制的可再生能源发电与电动汽车的协同调度策略。该论文主要贡献在于:
-
建立了可再生能源发电和电动汽车的数学模型: 该论文对风力发电和光伏发电的出力特性进行了建模,考虑了天气因素对可再生能源发电的影响。同时,该论文也对电动汽车的充电行为进行了建模,考虑了用户的出行模式、充电习惯等因素。
-
提出了基于模型预测控制的协同调度模型: 该论文利用模型预测控制(MPC)算法,建立了一个协同调度模型。该模型能够根据可再生能源发电的预测值和电动汽车用户的充电需求,动态调整电动汽车的充电功率,从而提高可再生能源的消纳能力和电网的稳定性。MPC算法的优势在于能够考虑未来的状态,进行滚动优化,从而实现更好的调度效果。
-
进行了仿真实验验证: 该论文利用Matlab/Simulink仿真平台,对所提出的协同调度策略进行了验证。仿真结果表明,该策略能够有效地提高可再生能源的利用率,降低电网的峰值负荷,并满足电动汽车用户的充电需求。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇