【故障诊断】基于迁移学习和SqueezeNet 的滚动轴承故障诊断附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

滚动轴承作为旋转机械的关键部件,其运行状态直接影响设备的稳定性和安全性。早期准确的故障诊断能够有效预防重大事故的发生,降低维护成本,并提高设备的整体运行效率。传统的故障诊断方法主要依赖于专家经验和人工特征提取,存在主观性强、泛化能力弱、效率低等问题。近年来,深度学习在图像识别、自然语言处理等领域取得了显著成果,并被逐渐应用于机械故障诊断领域。然而,在滚动轴承故障诊断中,深度学习方法面临着训练数据获取困难、模型训练时间长、模型复杂度高等挑战。为了解决这些问题,本文探讨了基于迁移学习和SqueezeNet的滚动轴承故障诊断方法,旨在提高诊断精度和效率,并降低模型复杂度。

一、滚动轴承故障诊断的挑战与深度学习方法的应用

滚动轴承的运行工况复杂,故障类型多样,且故障发生过程具有随机性和非线性特征。传统的故障诊断方法,例如基于时域、频域或时频域分析的方法,通常需要人工提取特征,并依赖于专家经验构建故障诊断模型。这些方法不仅耗时耗力,而且难以捕捉隐藏在复杂数据中的深层信息,导致诊断精度不高。

深度学习方法的出现为滚动轴承故障诊断带来了新的机遇。深度学习模型能够自动从原始数据中学习高阶特征,避免了人工特征提取的繁琐过程,并具有强大的非线性拟合能力,能够有效地识别复杂工况下的故障类型。例如,卷积神经网络(CNN)能够有效地提取信号的时序特征,递归神经网络(RNN)擅长处理序列数据,自编码器(Autoencoder)能够用于无监督特征学习。然而,将深度学习方法应用于滚动轴承故障诊断,仍然面临以下挑战:

  • 数据匮乏:

     滚动轴承在正常运行状态下产生的数据量较大,但故障数据的获取成本较高,特别是严重故障的数据往往难以获取,导致训练数据不足。

  • 计算资源限制:

     深度学习模型通常参数量庞大,需要大量的计算资源进行训练,例如GPU等硬件设备。

  • 模型复杂度高:

     为了提高诊断精度,需要构建更深更复杂的深度学习模型,但这也会增加模型的训练时间和计算成本,并容易出现过拟合现象。

二、迁移学习的原理与优势

迁移学习是一种将知识从一个领域(源域)迁移到另一个领域(目标域)的技术。当目标域数据不足时,可以利用源域的知识来辅助模型训练,从而提高模型的泛化能力和诊断精度。在滚动轴承故障诊断中,可以将已有的轴承数据集或相关设备的振动数据作为源域,将需要诊断的轴承数据作为目标域,通过迁移学习,利用源域的知识来提升目标域的诊断效果。

迁移学习的核心在于找到源域和目标域之间的相似性,并将源域学习到的知识有效地迁移到目标域。常见的迁移学习方法包括:

  • 基于实例的迁移学习:

     通过调整源域样本的权重,使得其更接近目标域样本,从而提高模型的泛化能力。

  • 基于特征的迁移学习:

     通过学习源域和目标域的共同特征空间,将源域和目标域的数据映射到该空间,从而实现知识迁移。

  • 基于模型的迁移学习:

     通过将源域训练好的模型的部分或全部参数迁移到目标域,从而加快模型的训练速度,并提高模型的诊断精度。

在滚动轴承故障诊断中,基于模型的迁移学习是一种常用的方法。例如,可以将ImageNet数据集上预训练的图像识别模型的部分卷积层迁移到轴承故障诊断任务中,并利用目标域数据对模型的参数进行微调(fine-tuning)。

三、SqueezeNet的网络结构与特点

SqueezeNet是一种轻量级的深度卷积神经网络,由加州大学伯克利分校的研究人员于2016年提出。SqueezeNet的主要特点是体积小、速度快、精度高。相比于传统的深度卷积神经网络,例如AlexNet和VGGNet,SqueezeNet在保持甚至提高识别精度的前提下,显著减少了模型参数的数量,降低了计算复杂度和存储空间占用。

SqueezeNet的核心思想是使用Fire Module来替代传统的卷积层。Fire Module由一个Squeeze层和一个Expand层组成。Squeeze层使用1x1卷积核来减少输入通道的数量,从而减少了模型的参数量。Expand层则使用1x1和3x3两种卷积核来提取特征,从而保持了模型的表达能力。

SqueezeNet具有以下优势:

  • 参数量小:

     SqueezeNet的参数量远小于传统的深度卷积神经网络,这使得它更容易部署在计算资源有限的设备上。

  • 计算速度快:

     SqueezeNet的计算复杂度较低,因此具有更快的推理速度。

  • 精度高:

     SqueezeNet在图像识别任务中取得了与传统深度卷积神经网络相当的精度。

四、基于迁移学习和SqueezeNet的滚动轴承故障诊断方法

基于迁移学习和SqueezeNet的滚动轴承故障诊断方法的基本流程如下:

  1. 数据预处理:

     对原始振动信号进行预处理,例如滤波、降噪、归一化等,以提高信号的质量。

  2. 构建数据集:

     将预处理后的振动信号转换为图像数据,例如时频图、小波变换图等,作为深度学习模型的输入。

  3. 迁移学习:

     选择一个在ImageNet数据集上预训练的SqueezeNet模型作为源模型,并将该模型的部分卷积层迁移到滚动轴承故障诊断任务中。

  4. 模型微调:

     使用滚动轴承故障数据集对迁移后的SqueezeNet模型进行微调,使其适应故障诊断任务。

  5. 模型评估:

     使用测试数据集对训练好的模型进行评估,计算诊断精度、召回率、F1-score等指标。

五、实验结果与分析

为了验证本文方法的有效性,我们使用公开的滚动轴承故障数据集(例如CWRU轴承数据集)进行实验。实验结果表明,基于迁移学习和SqueezeNet的故障诊断方法能够有效地提高诊断精度,并降低模型的复杂度。

与传统的深度学习方法相比,本文方法具有以下优势:

  • 更高的诊断精度:

     迁移学习能够利用源域的知识来辅助模型训练,从而提高模型的泛化能力和诊断精度。

  • 更快的训练速度:

     迁移学习能够利用预训练模型的权重初始化模型参数,从而加快模型的训练速度。

  • 更小的模型体积:

     SqueezeNet是一种轻量级的深度卷积神经网络,具有较小的参数量和计算复杂度,更容易部署在计算资源有限的设备上。

⛳️ 运行结果

🔗 参考文献

[1] 李政,汪凤翔,张品佳.基于图像融合与迁移学习的永磁同步电机驱动器强泛化性故障诊断研究[J].中国电机工程学报, 2024, 44(12):4933-4944.

[2] 刘阳,高国琴.采用改进的SqueezeNet模型识别多类叶片病害[J].农业工程学报, 2021.DOI:10.11975/j.issn.1002-6819.2021.2.022.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值