✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
安全密钥交换协议在现代通信安全领域扮演着至关重要的角色。其目标是使两个或多个参与者能够在不安全的信道上安全地共享秘密密钥,进而用于后续的加密通信。近年来,基于物理层安全机制的密钥交换协议引起了广泛关注。其中,利用基尔霍夫定律和约翰逊噪声(KLJN)的密钥交换方案,凭借其理论上的无条件安全性,吸引了大量的研究兴趣。然而,即使理论上安全的协议,在实际部署过程中依然面临各种安全威胁,其中针对随机数生成器(RNG)的攻击就是一种常见的且极具破坏性的攻击方式。本文将对基于KLJN方案的密钥交换协议中可能存在的RNG攻击进行深入研究,探讨其攻击原理、攻击手段以及潜在的防御策略。
一、 KLJN密钥交换方案原理简介
基于KLJN的密钥交换方案利用了物理噪声的随机性,结合电路原理,实现安全密钥的生成与共享。该方案的核心思想是:
-
噪声源: 利用电阻中的约翰逊噪声,产生随机的电压信号。约翰逊噪声的功率谱密度与温度和电阻值有关,具有良好的随机性。
-
基尔霍夫定律: 利用基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL),在多个电阻组成的电路中,使得参与者A和B分别测量电路中的电压或电流,并根据这些测量值提取共同的随机信号。
-
量子密钥分发类协议: 类似于量子密钥分发(QKD)中的BB84协议,通过公开信道共享测量基信息,筛选一致的测量结果,经过量化、纠错、私钥增强等步骤,最终获得共享的秘密密钥。
具体而言,该方案通常包含以下几个步骤:
- 电路设计:
设计包含多个电阻的电路,这些电阻产生约翰逊噪声。电路的设计需要保证参与者能够通过测量获得具有相关性的随机信号。
- 随机信号采集:
参与者A和B分别测量电路中的电压或电流,获得各自的随机信号序列。
- 公共信道协商:
参与者通过公开信道共享测量基信息,例如测量的时间戳、电路参数等。
- 数据筛选:
根据共享的测量基信息,筛选出一致的测量结果,保留具有相关性的数据。
- 量化:
将连续的模拟信号量化为离散的数字信号,例如0和1。
- 纠错:
利用纠错码,纠正量化过程中产生的错误。常见的纠错码包括低密度奇偶校验码(LDPC)和极化码。
- 私钥增强:
通过哈希函数等手段,进一步降低密钥的信息泄漏,提高密钥的安全性。
KLJN方案的优势在于其依赖于物理噪声的随机性,理论上具有抗计算能力攻击的潜力。然而,其安全性依然受到诸多因素的影响,尤其是RNG的质量。
二、 针对KLJN方案的RNG攻击原理
RNG攻击是指攻击者通过控制或影响RNG的输出,从而破坏密钥交换协议的安全性。在KLJN方案中,RNG主要体现在两个方面:
-
噪声源本身的随机性: 约翰逊噪声的产生依赖于物理过程,但实际的电阻元件可能存在非理想特性,例如非线性、温度敏感性等,这些因素可能导致噪声的随机性降低。此外,攻击者可以通过干扰电阻的环境,例如改变其温度,从而影响噪声的产生。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇