✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电力系统的稳定运行和可靠性供应是现代社会经济发展的基石。随着可再生能源的日益普及,电力系统的动态特性变得更加复杂,对电网的稳定控制提出了更高的要求。传统的同步发电机(SG)在电网中起着至关重要的支撑作用,提供了惯性响应和频率调节能力。然而,可再生能源通常通过电力电子逆变器接入电网,缺少固有惯性,导致电网频率波动加剧。为了模拟传统同步发电机的惯性特性和频率调节能力,并应用于可再生能源发电系统中,虚拟同步发电机(VSG)技术应运而生。
本文旨在探讨基于虚拟同步发电机控制的双机并联运行问题,并通过Simulink仿真验证其可行性和优势。文章将首先阐述虚拟同步发电机的基本原理和控制策略,然后深入分析双机并联运行时的关键问题,包括功率分配、环流抑制和稳定性分析。最后,基于Simulink平台建立双机并联模型,通过仿真实验验证VSG控制策略的有效性和优越性,并对仿真结果进行深入分析和讨论。
一、 虚拟同步发电机的基本原理与控制策略
虚拟同步发电机(VSG)是一种利用电力电子逆变器模拟传统同步发电机运行特性的控制方法。它通过在逆变器的控制算法中引入类似于同步发电机转动惯量、阻尼系数和励磁调节的机制,使得逆变器能够模拟同步发电机的固有惯性响应和频率调节能力。
VSG的核心思想是模拟同步发电机的功角特性。同步发电机的有功功率和频率之间存在着动态联系,可以通过如下公式表示:
-
J * dω/dt = Pe - Pm - D * ω
其中,J代表转动惯量,ω代表角速度,Pe代表电磁功率,Pm代表机械功率,D代表阻尼系数。
VSG控制策略的关键在于将上述公式嵌入到逆变器的控制算法中。具体来说,VSG控制器通常包含以下几个主要组成部分:
- 功率环:
该环节负责计算逆变器需要输出的电磁功率Pe,以维持电网频率稳定。该环节通常采用类似于同步发电机功角控制的策略,根据实际频率与参考频率之间的偏差,调节逆变器的输出功率。
- 电压环:
该环节负责控制逆变器的输出电压幅值,以维持电网电压稳定。该环节通常采用类似于同步发电机励磁控制的策略,根据实际电压与参考电压之间的偏差,调节逆变器的输出电压。
- 电流环:
该环节负责控制逆变器的输出电流,以确保逆变器的输出功率和电压满足功率环和电压环的要求。
- 同步角计算:
该环节负责计算逆变器的同步角,以确保逆变器的输出与电网同步。该环节通常采用锁相环(PLL)技术。
通过以上控制环节的协同工作,VSG可以模拟同步发电机的惯性响应、频率调节和电压支撑能力,从而提高电网的稳定性和可靠性。
二、 双机并联运行的关键问题
当多个VSG并联运行时,会面临一系列挑战,包括功率分配、环流抑制和稳定性分析。
-
功率分配: 在双机并联系统中,需要保证两个VSG能够合理地分担负载,避免某一台VSG过载运行,影响整个系统的稳定性和可靠性。理想的功率分配方案应该是根据VSG的容量进行比例分配,即容量大的VSG承担更多的负载,容量小的VSG承担较少的负载。为了实现合理的功率分配,可以采用以下策略:
- 下垂控制:
通过调节VSG的频率下垂系数和电压下垂系数,使得VSG的输出功率与其频率和电压成正比。这种方法简单易行,但可能导致频率和电压偏差较大。
- 集中式控制:
通过一个中央控制器协调控制各个VSG的输出功率,可以实现更精确的功率分配,但需要复杂的通信基础设施。
- 分布式控制:
通过相邻VSG之间的信息交互,实现自治的功率分配。这种方法具有较好的灵活性和可靠性。
- 下垂控制:
-
环流抑制: 由于各个VSG的参数和控制策略存在差异,可能会导致它们之间的输出电压和电流存在微小的差异,从而产生环流。环流会增加VSG的损耗,甚至可能导致VSG过流保护跳闸。为了抑制环流,可以采用以下策略:
- 虚拟阻抗控制:
在VSG的控制回路中引入虚拟阻抗,可以增加VSG的输出阻抗,从而降低环流。
- 差动控制:
通过测量VSG之间的电流差,并将其反馈到控制回路中,可以抑制环流。
- 虚拟阻抗控制:
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇