【无人机设计与控制】RRT多无人机编队路径规划

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无人机(Unmanned Aerial Vehicle, UAV)技术的快速发展,以及其在军事侦察、环境监测、物流运输等领域的广泛应用,使得多无人机协同编队飞行成为一个重要的研究方向。多无人机编队飞行能够显著提高任务效率,增强任务鲁棒性,降低单个无人机的风险。而路径规划作为实现多无人机编队飞行的关键环节,直接影响着整个系统的性能和安全性。如何在复杂环境中,有效地规划出多无人机安全的、高效的、协同的飞行路径,成为了一个极具挑战性的问题。

传统的路径规划算法,如A*算法、Dijkstra算法等,在解决单无人机路径规划问题上表现良好,但当应用于多无人机编队规划时,常常面临计算复杂度高、实时性差等问题。原因在于多无人机编队规划需要同时考虑多个无人机的运动约束、碰撞避免、编队保持等因素,使得搜索空间呈指数级增长。近年来,基于随机采样的路径规划算法,如Rapidly-exploring Random Tree (RRT) 算法,凭借其良好的探索性和计算效率,逐渐成为多无人机编队路径规划的研究热点。

本文将深入探讨RRT算法在多无人机编队路径规划中的应用,分析其优势与局限,并对现有改进算法进行总结与展望,旨在为该领域的研究提供理论参考。

一、 RRT算法的基本原理与特点

RRT算法是一种基于随机采样的增量式搜索算法,其核心思想是从起始点开始,通过随机采样在空间中扩展一棵树状结构,直到该树能够覆盖目标区域。RRT算法的基本步骤如下:

  1. 随机采样 (Sampling):

     在搜索空间中随机生成一个采样点 x_rand

  2. 寻找最近点 (Nearest Neighbor):

     从已生成的树 T 中寻找距离 x_rand 最近的节点 x_near

  3. 扩展 (Extension):

     从 x_near 出发,朝着 x_rand 的方向延伸一段距离 δ,生成新的节点 x_new

  4. 碰撞检测 (Collision Detection):

     检查 x_near 到 x_new 的路径是否与环境中的障碍物发生碰撞。如果无碰撞,则将 x_new 添加到树 T 中,并将其父节点设置为 x_near

  5. 目标检测 (Goal Checking):

     检查 x_new 是否到达目标区域。如果到达,则算法终止,并从 x_new 回溯至起始点,生成路径。

  6. 重复步骤1-5,直到满足终止条件。

RRT算法具有以下显著特点:

  • 概率完备性:

     随着采样点的增加,RRT算法最终能够找到一条可行路径,即使该路径并非最优。

  • 计算效率高:

     由于采用随机采样的方式,RRT算法避免了对整个搜索空间进行穷举,大大降低了计算复杂度。

  • 易于处理高维空间:

     RRT算法在高维空间中的表现优于确定性算法,因此适合处理多无人机编队规划中的复杂约束。

  • 适用于非完整约束:

     RRT算法可以通过调整扩展策略来适应无人机的运动学约束,如最小转弯半径、最大速度等。

二、 RRT算法在多无人机编队路径规划中的应用挑战

尽管RRT算法具有诸多优点,但将其直接应用于多无人机编队路径规划仍然面临着诸多挑战:

  • 高维搜索空间:

     多无人机编队路径规划需要同时规划多个无人机的路径,使得搜索空间的维度呈指数级增长,这大大增加了RRT算法的计算负担。

  • 碰撞避免:

     需要确保无人机在飞行过程中不会与环境中的障碍物发生碰撞,同时也要避免无人机之间的相互碰撞。

  • 编队保持:

     需要确保无人机在飞行过程中能够保持特定的编队队形,例如直线编队、圆形编队等。

  • 实时性要求:

     在动态环境中,需要能够快速地重新规划路径,以应对突发情况。

  • 最优性保证:

     原始的RRT算法只保证概率完备性,而无法保证路径的最优性。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值