【无人机设计与控制】多无人机协同路径规划的可调节RRTO算法及参数配置

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要:随着无人机技术的快速发展,多无人机协同执行任务的需求日益增长。多无人机协同路径规划作为其中的关键环节,旨在寻找满足任务约束、避免碰撞并优化任务目标的路径。本文针对多无人机协同路径规划问题,深入研究了可调节的随机路径树优化(Adjustable Rapidly-exploring Random Tree Optimization, Adjustable RRTO)算法,并探讨了其参数配置对算法性能的影响。该算法在传统RRTO算法的基础上,引入了可调节的采样策略和连接策略,以提高算法的探索效率和路径质量。本文首先概述了多无人机协同路径规划的背景和挑战,然后详细阐述了Adjustable RRTO算法的设计思想和实现步骤。接着,着重分析了采样策略、连接策略以及优化目标权重等关键参数对算法性能的影响,并通过仿真实验验证了不同参数配置下算法的有效性。最后,总结了本文的研究成果并展望了未来的研究方向。

引言

近年来,无人机(Unmanned Aerial Vehicle, UAV)凭借其灵活机动、自主性强、成本低廉等优势,在各个领域得到了广泛应用。然而,单个无人机的能力往往受到限制,难以胜任复杂且大规模的任务。因此,多无人机协同执行任务的需求日益凸显。多无人机协同路径规划作为多无人机协同控制的核心问题之一,旨在为多架无人机生成满足任务约束、避免碰撞并优化任务目标的路径。

多无人机协同路径规划面临诸多挑战。首先,问题维度随着无人机数量的增加而呈指数增长,导致搜索空间异常庞大。其次,无人机之间需要避免碰撞,这增加了路径规划的复杂性。此外,实际应用中往往存在多种约束,如飞行时间、飞行距离、能源消耗等,需要算法进行兼顾。最后,不同任务对路径规划的要求不同,需要算法具有一定的适应性和可调节性。

传统的路径规划算法,如A*算法、Dijkstra算法等,在处理高维路径规划问题时往往效率低下。基于采样的路径规划算法,如快速探索随机树(Rapidly-exploring Random Tree, RRT)算法,通过随机采样和增量式扩展树的方式,能够有效地解决高维路径规划问题。然而,标准的RRT算法存在收敛速度慢、路径质量差等问题。

针对以上问题,本文研究了可调节的随机路径树优化(Adjustable Rapidly-exploring Random Tree Optimization, Adjustable RRTO)算法。该算法在传统RRTO算法的基础上,引入了可调节的采样策略和连接策略,以提高算法的探索效率和路径质量。通过调整算法的参数,可以使其更好地适应不同的任务需求。

多无人机协同路径规划问题建模

多无人机协同路径规划问题可以形式化地描述如下:

给定一个包含 n架无人机的集合𝑈={𝑈1,𝑈2,...,𝑈𝑛}U={U1,U2,...,Un},一个工作空间𝑊⊂𝑅𝑑W⊂Rd(通常d= 2 或 3),每个无人机𝑈𝑖Ui的起始位置𝑞𝑠𝑡𝑎𝑟𝑡𝑖∈𝑊𝑓𝑟𝑒𝑒qstarti∈Wfree和目标位置𝑞𝑔𝑜𝑎𝑙𝑖∈𝑊𝑓𝑟𝑒𝑒qgoali∈Wfree,其中𝑊𝑓𝑟𝑒𝑒Wfree表示无障碍空间。目标是为每架无人机𝑈𝑖Ui找到一条从𝑞𝑠𝑡𝑎𝑟𝑡𝑖qstarti到𝑞𝑔𝑜𝑎𝑙𝑖qgoali的无碰撞路径𝜏𝑖:[0,1]→𝑊𝑓𝑟𝑒𝑒τi:[0,1]→Wfree,使得路径的某个代价函数最小化。

常用的代价函数包括:

  • 路径长度:

     所有无人机的路径长度之和,旨在寻找最短路径。

  • 飞行时间:

     所有无人机的飞行时间之和,旨在减少任务完成时间。

  • 能源消耗:

     所有无人机的能源消耗之和,旨在降低运行成本。

  • 威胁规避:

     路径与威胁源的距离,旨在确保无人机的安全。

此外,还需满足以下约束条件:

  • 无碰撞约束:

     任意时刻,任意两架无人机之间必须保持一定的安全距离。

  • 动力学约束:

     无人机的速度、加速度等必须在允许范围内。

  • 任务约束:

     路径需要满足特定的任务要求,如到达特定位置、执行特定操作等。

Adjustable RRTO算法设计

Adjustable RRTO算法的核心思想是在RRT算法的基础上,引入可调节的采样策略和连接策略,以提高算法的探索效率和路径质量。该算法主要包括以下步骤:

  1. 初始化: 为每架无人机 𝑈𝑖Ui 创建一棵树 𝑇𝑖Ti,并将起始位置 𝑞𝑠𝑡𝑎𝑟𝑡𝑖qstarti 作为根节点加入到树中。

  2. 采样: 根据可调节的采样策略,在工作空间 𝑊W 中随机采样一个节点 𝑞𝑟𝑎𝑛𝑑qrand。

  3. 寻找最近邻: 对于每架无人机 𝑈𝑖Ui,在树 𝑇𝑖Ti 中寻找距离 𝑞𝑟𝑎𝑛𝑑qrand 最近的节点 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑖qnearesti。

  4. 扩展: 沿着 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑖qnearesti 指向 𝑞𝑟𝑎𝑛𝑑qrand 的方向,以一定的步长 𝜖ϵ 扩展一个新的节点 𝑞𝑛𝑒𝑤𝑖qnewi。

  5. 碰撞检测: 检查连接 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑖qnearesti 和 𝑞𝑛𝑒𝑤𝑖qnewi 的路径是否与障碍物或其他无人机发生碰撞。如果发生碰撞,则放弃该节点。

  6. 连接: 根据可调节的连接策略,将 𝑞𝑛𝑒𝑤𝑖qnewi 加入到树 𝑇𝑖Ti 中,并更新树的结构。

  7. 优化: 对已生成的路径进行优化,以减少路径长度、飞行时间等代价。

  8. 重复: 重复步骤 2 到 7,直到满足终止条件,例如找到连接起始位置和目标位置的路径,或者达到最大迭代次数。

可调节的采样策略

Adjustable RRTO算法采用可调节的采样策略,以提高算法的探索效率。常用的采样策略包括:

  • 均匀采样:

     在整个工作空间 𝑊W 中均匀随机采样。

  • 目标偏置采样:

     以一定的概率 𝑝𝑔𝑜𝑎𝑙pgoal 采样目标位置 𝑞𝑔𝑜𝑎𝑙𝑖qgoali,以概率 $1-p_{goal}$ 均匀随机采样。

  • 高斯采样:

     在已生成的路径附近进行高斯采样,以提高路径质量。

  • 基于信息的采样:

     根据工作空间中的信息熵进行采样,以探索未知区域。

通过调整不同采样策略的权重,可以控制算法的探索方向和探索效率。

可调节的连接策略

Adjustable RRTO算法采用可调节的连接策略,以提高算法的路径质量。常用的连接策略包括:

  • 最近邻连接:

     将新节点 𝑞𝑛𝑒𝑤𝑖qnewi 连接到距离其最近的节点 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑖qnearesti。

  • 半径连接:

     将新节点 𝑞𝑛𝑒𝑤𝑖qnewi 连接到半径 𝑟r 范围内的所有节点。

  • K近邻连接:

     将新节点 𝑞𝑛𝑒𝑤𝑖qnewi 连接到距离其最近的 K 个节点。

  • 路径优化连接:

     尝试将新节点 𝑞𝑛𝑒𝑤𝑖qnewi 连接到树中的其他节点,如果能够降低路径代价,则进行连接。

通过调整连接策略的参数,可以控制算法的连接密度和路径质量。

参数配置与实验分析

Adjustable RRTO算法的性能受到多种参数的影响,包括采样策略的权重、连接策略的参数、步长 𝜖ϵ、优化目标权重等。为了评估不同参数配置对算法性能的影响,本文设计了一系列仿真实验。

实验场景为一个二维工作空间,包含多架无人机,每架无人机都需要从起始位置到达目标位置。实验的目标是找到满足无碰撞约束、最短路径以及最低能源消耗的路径。

实验结果表明:

  • 采样策略:

     采用目标偏置采样能够显著提高算法的收敛速度,但可能会陷入局部最优。结合均匀采样和高斯采样,能够更好地平衡探索效率和路径质量。

  • 连接策略:

     采用半径连接和K近邻连接能够提高路径的平滑性,但会增加计算复杂度。路径优化连接能够显著降低路径代价,但需要消耗更多的时间。

  • 步长 𝜖ϵ:

     较小的步长能够提高路径的精度,但会增加迭代次数。较大的步长能够加快收敛速度,但可能会忽略一些细节。

  • 优化目标权重:

     通过调整不同优化目标的权重,可以控制算法对不同目标的偏好。例如,提高路径长度的权重,可以生成更短的路径,但可能会增加能源消耗。

通过对实验结果的分析,可以得出以下结论:

  • Adjustable RRTO算法能够有效地解决多无人机协同路径规划问题。

  • 不同的参数配置对算法的性能有显著影响。

  • 可以通过调整算法的参数,使其更好地适应不同的任务需求。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值