✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
多智能体强化学习(MARL)旨在通过智能体间的协作学习,实现全局最优策略。然而,在高维状态空间下,值函数的评估面临巨大挑战。本文将MARL问题转化为一个带有约束项的分布式优化问题。在该问题中,所有智能体共享状态和动作空间,但仅能获取各自的局部奖励。进一步地,本文提出一种基于分数阶动力学的分布式优化算法来解决此问题。该算法利用分数阶导数来提升优化过程的探索能力和收敛速度。此外,我们通过理论分析证明了所提出算法的收敛性,并采用数值实验验证了其有效性。
关键词: 多智能体强化学习,分布式优化,分数阶动力学,收敛性分析,全局最优策略
1. 引言
近年来,人工智能取得了显著进展,并在诸多领域展现出强大的应用潜力。作为人工智能的重要分支,强化学习(RL)通过智能体与环境的交互学习,寻找最优策略以最大化累计奖励。随着应用场景的日益复杂,单智能体强化学习面临着诸多局限,例如环境的非平稳性、维度灾难等。多智能体强化学习(MARL)作为一种更具潜力的范式,通过多个智能体的协作学习,能够有效地解决复杂环境下的学习问题,并在机器人协作、交通控制、博弈论等领域得到了广泛应用。
然而,MARL也面临着诸多挑战。其中一个关键挑战是如何在高维状态空间下有效地评估值函数。传统的RL方法,如Q-learning和SARSA,在高维空间下容易出现维度灾难,导致学习效率低下甚至无法收敛。此外,在MARL环境中,由于智能体之间存在交互,每个智能体的策略都会影响其他智能体的行为,从而导致环境的非平稳性,进一步加剧了学习的难度。
为了解决上述问题,本文提出了一种基于分布式优化方法的MARL框架。我们将MARL问题转化为一个带有约束项的分布式优化问题,其中每个智能体负责优化其局部策略,并通过智能体间的通信协作,最终实现全局最优策略。具体而言,所有智能体共享状态和动作空间,但仅能获得各自的局部奖励。我们的目标是设计一种有效的分布式优化算法,使得所有智能体的策略最终能够收敛到全局最优策略。
2. 相关工作
现有的MARL方法可以大致分为三大类:独立学习(Independent Learning, IL)、集中式训练分布式执行(Centralized Training Decentralized Execution, CTDE)和通信学习(Communication Learning)。
-
独立学习(IL): IL方法将每个智能体视为独立的个体,并采用单智能体强化学习算法进行学习。这种方法的优点是简单易实现,但忽略了智能体之间的交互,容易导致环境的非平稳性。
-
集中式训练分布式执行(CTDE): CTDE方法利用一个中央控制器在训练阶段收集所有智能体的信息,并学习一个集中的值函数或策略。在执行阶段,每个智能体则根据学习到的策略独立行动。这种方法的优点是可以有效地解决环境的非平稳性,但需要大量的训练数据和计算资源。
-
通信学习(Communication Learning): 通信学习方法允许智能体之间进行信息交流,从而更好地理解环境和协调行动。这种方法可以提高智能体之间的协作效率,但需要设计有效的通信协议和信息编码方式。
近年来,分布式优化方法在解决MARL问题中得到了越来越多的关注。一些研究者将MARL问题转化为一个全局优化问题,并通过分布式梯度下降等方法进行求解。然而,传统的分布式优化算法在处理非凸问题时容易陷入局部最优。
分数阶动力学作为一种新兴的数学工具,在控制理论和信号处理等领域得到了广泛应用。分数阶导数具有记忆性,可以更准确地描述系统的动态行为。一些研究表明,将分数阶导数引入优化算法可以提高算法的探索能力和收敛速度。
3. 基于分数阶动力学的分布式优化算法
该算法的核心思想是利用分数阶导数来增强优化过程的记忆性,从而更有效地探索策略空间并加速收敛。辅助变量 𝑣𝑖vi 类似于动量项,用于累积历史梯度信息。分数阶导数项则可以进一步平滑梯度变化,并防止算法陷入局部最优。
4. 收敛性分析
本节我们将证明所提出算法的收敛性。由于篇幅限制,我们只给出主要结论和证明思路。更详细的证明过程将在后续的论文中给出。
定理: 在满足一定条件下,所提出的基于分数阶动力学的分布式优化算法能够收敛到全局最优策略。
证明思路:
-
假设: 对局部奖励函数 𝐽𝑖Ji 和策略空间 ΠΠ 做一些合理的假设,例如Lipschitz连续性和凸性。
-
Lyapunov函数: 构造一个合适的Lyapunov函数,用于衡量算法的收敛性。
-
递推不等式: 推导Lyapunov函数的递推不等式,证明Lyapunov函数随着迭代步的增加而单调递减。
-
收敛性结论: 根据Lyapunov函数的单调递减性,得出算法能够收敛到全局最优策略的结论。
5. 数值实验
为了验证所提出算法的有效性,我们设计了一个数值实验。我们考虑一个合作博弈问题,其中多个智能体需要协作完成一个任务。具体而言,每个智能体可以选择若干个动作,这些动作的组合会影响所有智能体的局部奖励。我们设计了一个合适的局部奖励函数,使得全局最优策略需要所有智能体协同行动。
我们将所提出的算法与传统的分布式梯度下降算法进行了比较。实验结果表明,所提出的算法具有更快的收敛速度和更高的最终奖励。这表明分数阶动力学能够有效地提高优化过程的探索能力和收敛速度。
⛳️ 运行结果
🔗 参考文献
[1] Dai W , Wang W , Mao Z ,et al.Distributed Policy Evaluation with Fractional Order Dynamics in Multiagent Reinforcement Learning[J].Security & Communication Networks, 2021.DOI:10.1155/2021/1020466.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇