【MIMO通信】基于可重构智能表面MIMO系统速率优化附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

多输入多输出(MIMO)技术作为现代无线通信系统的核心组成部分,显著提升了频谱效率和可靠性。然而,传统MIMO系统的性能受限于信道的多径衰落和干扰。近年来,可重构智能表面(Reconfigurable Intelligent Surface, RIS)作为一种新兴技术,为操纵无线电波传播环境提供了新的范式,并与MIMO技术相结合,为实现更高效、更灵活的无线通信系统开辟了道路。本文深入探讨了基于可重构智能表面的MIMO系统速率优化问题。首先,我们概述了RIS和MIMO技术的基本原理,并分析了二者结合的优势。接着,我们详细阐述了基于RIS-MIMO系统的速率优化问题建模,包括信道模型、优化目标函数以及约束条件。随后,我们系统地回顾了当前针对RIS-MIMO系统速率优化的各种优化方法,包括但不限于基于交替优化的方法、基于凸优化的方法、基于智能体的方法以及基于深度学习的方法,并对它们的原理、特点和适用场景进行了比较分析。此外,本文还探讨了影响RIS-MIMO系统速率优化的关键因素,如RIS的部署位置、阵元数量、相位控制精度以及用户分布等。最后,我们展望了RIS-MIMO系统速率优化未来的研究方向,包括更复杂的信道环境建模、多用户协作优化、能效与速率的权衡以及基于机器学习的自适应优化等。本文旨在为理解和进一步研究基于RIS-MIMO系统的速率优化问题提供全面的视角和有益的参考。

关键词: 可重构智能表面(RIS);多输入多输出(MIMO);速率优化;智能无线通信;信道建模;优化算法

1. 引言

随着第五代(5G)及未来第六代(6G)移动通信系统的快速发展,无线通信正朝着更高的速率、更低的延迟和更广阔的覆盖范围迈进。然而,无线信道的复杂性和不确定性,特别是多径衰落、阴影效应和干扰,严重限制了通信系统的性能。为了克服这些挑战,各种先进技术应运而生,其中多输入多输出(MIMO)技术通过利用空间自由度来提高频谱效率和信道容量,已成为现代无线通信系统中不可或缺的关键技术 [1]。

MIMO系统通过在发射端和接收端配置多个天线,能够实现空间复用、发送分集和接收分集等增益。然而,MIMO系统的性能仍然在很大程度上取决于信道的特性。在信道条件恶劣(例如,缺乏丰富的多径散射或存在严重的干扰)的情况下,MIMO系统的性能提升会受到显著限制。传统的MIMO技术主要通过改进收发信机的信号处理算法来优化系统性能,但无法直接改变无线电波传播环境本身 [2]。

近年来,可重构智能表面(Reconfigurable Intelligent Surface, RIS)作为一种革命性的技术,为主动改变无线电波传播环境提供了全新的思路。RIS是一种由大量可编程无源散射单元组成的超材料表面,每个散射单元都可以独立或协同地调整入射信号的相位、幅度或极化状态,从而智能地重构无线信道 [3]。与传统的有源中继或基站不同,RIS通常是无源的,无需射频链,具有低功耗、低成本和易于部署的特点,因此在弥补传统MIMO系统在信道控制方面的不足具有巨大潜力。

将RIS集成到MIMO系统中,形成RIS-MIMO系统,能够实现对无线信道的联合优化,进一步提升系统的性能 [4]。通过智能地控制RIS反射信号的相位,可以将多径信号进行有效的对齐和增强,从而改善信号质量,减少干扰,甚至在视距(LoS)路径被阻挡的情况下建立新的通信链路。因此,基于RIS的MIMO系统速率优化成为了当前无线通信领域的研究热点。速率是衡量通信系统性能的关键指标之一,最大化系统速率意味着在给定资源下实现最高的数据传输效率。

本文旨在对基于RIS-MIMO系统的速率优化问题进行深入探讨。第二节将回顾RIS和MIMO技术的基本原理及其结合的优势。第三节将详细阐述RIS-MIMO系统速率优化问题建模。第四节将系统介绍现有的速率优化方法。第五节将分析影响速率优化的关键因素。最后,第六节将展望未来的研究方向。

2. 可重构智能表面(RIS)与MIMO技术

2.1 MIMO技术概述

MIMO技术是利用空间自由度来提升无线通信系统性能的关键技术。其核心思想是在发射端和接收端部署多个天线,通过空间多路传输、空间分集等方式来提高系统的容量、可靠性和覆盖范围 [1]。

  • 空间复用(Spatial Multiplexing):

     在多天线系统中,可以通过并行传输多个独立的数据流来提高数据传输速率。理论上,在发射端和接收端各有𝑁𝑡Nt和𝑁𝑟Nr根天线时,系统可以传输最多min⁡(𝑁𝑡,𝑁𝑟)min(Nt,Nr)个独立的数据流,从而将信道容量提高min⁡(𝑁𝑡,𝑁𝑟)min(Nt,Nr)倍。

  • 发送分集(Transmit Diversity):

     通过在不同天线上发送相同的信息但经过编码或时延处理,可以降低信道衰落的影响,提高通信的可靠性。例如,Alamouti码是一种常用的发送分集技术。

  • 接收分集(Receive Diversity):

     利用接收端多根天线接收到的信号进行合并,可以降低衰落的影响,提高信号质量。常见的接收分集技术包括最大比合并(MRC)和选择合并(SC)。

MIMO系统的性能很大程度上取决于信道矩阵的特性。理想的MIMO信道应具有丰富的多径散射,使得信道矩阵是满秩的,从而能够有效利用空间复用增益。然而,在实际环境中,信道往往存在相关性或缺乏足够的多径,导致信道矩阵秩亏或接近秩亏,从而限制了MIMO的性能。

2.2 可重构智能表面(RIS)技术概述

可重构智能表面(RIS),也被称为智能反射面(Intelligent Reflecting Surface, IRS)或被动式表面(Passive Surface),是一种由大量小型、低成本、可编程的无源反射单元构成的平面阵列 [3]。每个反射单元可以独立地调整入射电磁波的相位、幅度或极化。通过外部控制器,可以实时地调整每个反射单元的参数,从而智能地改变电磁波的传播路径和特性。

RIS的基本工作原理是接收来自发射端的信号,并通过每个单元的反射实现对信号的相干叠加或相消。通过精确控制每个反射单元的相位偏移,可以将多个反射信号在接收端进行同相叠加,从而增强信号强度;或者将干扰信号进行反相叠加,从而抵消干扰。

与传统的有源中继或基站相比,RIS具有以下优势:

  • 低功耗:

     RIS单元通常是无源的,仅消耗少量能量用于控制,无需射频链,显著降低了能耗。

  • 低成本:

     RIS通常由低成本的材料和简单的电子元件构成,制造成本较低。

  • 易于部署:

     RIS可以被设计成轻薄的表面,易于安装在墙壁、建筑物表面等处。

  • 灵活性:

     RIS可以通过软件控制实现灵活的信道重构,适应不同的通信场景和需求。

然而,RIS也面临一些挑战,例如精确的信道状态信息(CSI)获取以及大量的反射单元控制等问题。

2.3 RIS与MIMO技术的结合优势

将RIS技术与MIMO技术相结合,形成RIS-MIMO系统,可以充分发挥两者的优势,实现对无线信道的联合优化,从而显著提升通信系统的性能 [4]。

  • 增强有效信道增益:

     RIS通过智能反射,可以改变发射端到接收端的等效信道。在存在视距路径被阻挡或多径衰落严重的情况下,RIS可以建立新的反射路径,并通过相干叠加来增强接收信号强度,从而提高信道增益。

  • 提高信道秩:

     RIS引入额外的反射路径,可以增加等效信道的维度和多样性,从而提高信道矩阵的秩,有利于充分利用MIMO的空间复用增益。

  • 减少干扰:

     RIS可以通过智能反射来抵消或削弱干扰信号,例如在多用户场景下,RIS可以引导信号避开其他用户的方向,或者将干扰信号反射到对其他用户无害的方向。

  • 实现被动波束赋形:

     RIS可以通过调整反射单元的相位,实现对信号的被动波束赋形,将能量集中到目标用户方向,提高信号的定向性。

  • 降低功耗:

     与传统的有源MIMO系统相比,RIS的无源特性可以在一定程度上降低系统的总体能耗。

RIS-MIMO系统通过对传输环境进行智能控制,为提升MIMO系统的容量、覆盖和可靠性提供了新的机遇。

3. 基于RIS-MIMO系统的速率优化问题建模

基于RIS-MIMO系统的速率优化目标通常是最大化系统的传输速率,即吞吐量。系统的速率受到多种因素的影响,包括发射功率、信道条件、RIS的配置以及可能的干扰等。在进行速率优化时,需要建立合适的系统模型和优化问题。

⛳️ 运行结果

🔗 参考文献

[1] 张驰亚,刘莹洁,李兴泉,等.考虑硬件损耗的可重构智能表面辅助的MIMO通信系统[J].中国科学:信息科学, 2023, 53(7):1423-1437.

[2] 王继龙,岳殿武,贾瑞霞,等.多有源可重构智能表面辅助通信系统的和速率优化研究[J].无线电工程, 2023, 53(12):2805-2810.

[3] 林东平,刘莹洁,徐齐钱,等.可重构智能表面辅助的MIMO通信系统的参数优化方法:CN202210753031.9[P].CN202210753031.9[2025-04-24].

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值