【MIMO通信】基于稀疏大规模衰落处理的节能无蜂窝大规模MIMO附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无蜂窝大规模 MIMO(Cell-Free Massive MIMO)是一种有潜力的 5G 及未来通信技术,通过大量分布式接入点(AP)为用户提供服务,可有效缓解小区间干扰问题4。基于稀疏大规模衰落处理的节能无蜂窝大规模 MIMO 主要涉及以下几个方面:

系统模型

考虑一个无蜂窝大规模 MIMO 系统,其中有大量的 AP 随机分布在一个区域内,这些 AP 通过回程链路连接到中央处理器(CPU),同时为多个单天线用户提供服务3。假设信道为准静态平坦衰落信道,即信道在一个相干时间间隔内保持不变,且在不同的相干时间间隔内独立变化。用户与 AP 之间的信道受到大尺度衰落和小尺度衰落的影响,大尺度衰落包括路径损耗和阴影衰落,小尺度衰落通常建模为瑞利衰落。

稀疏大规模衰落处理

  • 信道估计

    :由于无蜂窝大规模 MIMO 系统中 AP 数量众多,准确的信道估计是一个关键问题。利用信道的稀疏特性,可以采用压缩感知等技术来进行信道估计。例如,基于稀疏贝叶斯学习的信道估计算法,将信道系数看作是稀疏的随机变量,通过迭代估计信道的均值和协方差,从而得到信道的估计值。这种方法可以在较少的导频资源下实现高精度的信道估计,降低了信道估计的开销,进而节省能量。

  • 预编码设计

    :在发射端,为了提高系统的性能和能效,需要设计合适的预编码算法。基于稀疏大规模衰落的预编码算法通常考虑将发射功率集中在信道质量较好的方向上,以减少对其他用户的干扰。例如,零陷预编码(ZF)算法在理想信道状态信息下可以完全消除用户间的干扰,但在实际中由于信道估计误差和大规模衰落的影响,性能会有所下降。为了克服这个问题,可以采用基于稀疏约束的预编码算法,通过在预编码矩阵的设计中加入稀疏正则化项,使得预编码矩阵具有稀疏结构,从而更好地适应大规模衰落的特性,提高系统的能效。

节能优化

  • 功率控制

    :根据信道的稀疏大规模衰落情况,动态调整 AP 的发射功率是实现节能的重要手段。例如,对于信道质量较好的 AP,可以适当降低其发射功率,而对于信道质量较差的 AP,则可以增加发射功率,以保证所有用户的服务质量。基于博弈论的功率控制算法可以将 AP 的功率控制问题建模为一个非合作博弈,每个 AP 根据自己的信道状态和其他 AP 的功率选择来调整自己的发射功率,以达到系统的纳什均衡,从而在满足用户速率要求的前提下,最小化系统的总发射功率。

  • AP 休眠机制

    :考虑到用户分布的不均匀性和业务量的动态变化,可以引入 AP 休眠机制来进一步节省能量。通过监测用户的活动情况和信道质量,当某个 AP 所服务的用户数量较少或者信道质量较差时,可以将该 AP 设置为休眠状态,暂停其信号发射和处理功能,从而减少能耗。当有新的用户接入或者信道质量改善时,再唤醒休眠的 AP。基于机器学习的 AP 休眠算法可以利用历史数据和实时监测信息,预测用户的业务需求和信道变化趋势,从而更智能地决定 AP 的休眠和唤醒时机,提高系统的能效。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值