✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
变流器;驱动稳定性;配电网;Q (V)- 特征控制;稳定性分析
一、引言
1.1 研究背景
近年来,以太阳能、风能为代表的分布式电源(DG)在配电网中的渗透率不断提高 。变流器作为分布式电源与配电网连接的核心设备,承担着将直流电转换为交流电并实现功率控制的重要功能 。然而,变流器的引入改变了配电网传统的辐射状结构和功率流动特性,其驱动稳定性问题逐渐凸显 。当变流器运行不稳定时,可能引发配电网电压波动、功率振荡等现象,严重威胁配电网的安全可靠运行 。因此,研究提升变流器驱动稳定性的控制策略,对保障配电网稳定运行具有重要意义。
1.2 研究现状
目前,针对变流器在配电网中的控制策略研究已取得一定成果 。传统的控制方法如恒功率控制、恒电压控制等,在一定程度上能满足配电网运行要求,但面对复杂多变的运行工况和大量分布式电源接入带来的影响,其稳定性和适应性存在不足 。随着研究的深入,一些先进的控制策略被提出,如下垂控制、虚拟同步机控制等,这些策略在改善变流器运行性能方面发挥了积极作用 。Q (V)- 特征控制作为一种基于无功 - 电压(Q-V)关系的控制策略,能够根据配电网电压变化动态调节变流器无功输出,在提升变流器驱动稳定性方面展现出良好的应用潜力 。然而,目前关于 Q (V)- 特征控制在配电网中对变流器驱动稳定性的影响及作用机制研究仍不够深入,需要进一步探索。
1.3 研究目的与意义
本研究旨在深入分析 Q (V)- 特征控制对配电网中变流器驱动稳定性的影响,揭示其作用机制,提出基于 Q (V)- 特征控制的稳定性优化策略 。通过建立理论模型和仿真实验,验证 Q (V)- 特征控制在提升变流器驱动稳定性、改善配电网电压质量等方面的有效性 。研究成果将为配电网中变流器的控制策略设计和优化提供理论依据和技术支持,有助于推动分布式电源在配电网中的大规模安全应用,提高配电网的运行可靠性和经济性。
二、配电网中变流器驱动稳定性问题分析
2.1 变流器对配电网的影响
2.1.1 改变功率流动特性
传统配电网功率单向流动,从变电站流向负荷 。分布式电源经变流器接入后,功率流动变得复杂,可能出现双向流动情况 。当分布式电源出力大于本地负荷需求时,多余功率会向电网倒送,导致配电网潮流分布发生变化,增加了电网调度和运行管理的难度 。
2.1.2 影响电压稳定性
变流器的运行状态直接影响配电网电压 。变流器输出功率的波动会引起线路电流变化,进而导致电压降改变 。此外,当变流器发生故障或控制策略不合理时,可能引发电压骤升、骤降等问题,威胁配电网电压稳定性 。
2.1.3 引发谐波污染
变流器内部电力电子器件的开关动作会产生谐波电流 。这些谐波电流注入配电网后,会导致电网电压波形畸变,增加线路损耗,影响电气设备的正常运行,降低配电网电能质量 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇