✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本论文针对复杂交通模式下电梯调度效率低下、乘客等待时间长等问题,深入分析复杂交通模式的特点及其对电梯调度的影响,系统研究现有电梯调度算法的优势与不足。在此基础上,从多目标优化、智能算法改进、结合实时交通数据等方向提出电梯调度算法的优化策略,并通过仿真实验对优化后的算法进行性能评估。研究结果表明,优化后的电梯调度算法在降低乘客平均等待时间、提高电梯运行效率等方面具有显著效果,为复杂交通模式下电梯调度问题提供了新的解决思路和方法。
关键词
复杂交通模式;电梯调度算法;多目标优化;智能算法;实时交通数据
一、引言
1.1 研究背景与意义
随着城市化进程的加快,高层建筑如写字楼、商场、酒店等日益增多,电梯作为高层建筑中重要的垂直交通工具,其调度效率直接影响着人们的出行体验和建筑的运营效率 。在复杂交通模式下,如早晚高峰时段、大型活动散场时,电梯面临着客流量大、流向复杂、需求多样化等问题,传统的电梯调度算法往往难以满足高效调度的需求,导致乘客等待时间过长、电梯运行效率低下等问题 。因此,开展复杂交通模式中电梯调度算法的方向优化研究,对于提高电梯服务质量、提升建筑整体运营水平具有重要的现实意义。
1.2 国内外研究现状
国外在电梯调度算法研究方面起步较早,早期主要采用传统的调度算法,如单轿厢调度算法、分区调度算法等 。随着智能算法的发展,遗传算法、粒子群算法等被逐渐应用于电梯调度领域,通过模拟生物进化或群体智能行为,优化电梯调度方案 。近年来,深度学习算法也开始在电梯调度中得到应用,利用其强大的数据分析和预测能力,实现更精准的调度 。
国内相关研究也在不断发展,学者们结合我国高层建筑的特点和交通需求,对电梯调度算法进行了深入研究和改进 。一些研究将多种智能算法相结合,以提高算法的性能;还有研究考虑了乘客的个性化需求,提出了更加人性化的调度策略 。但目前的研究在应对复杂交通模式下的动态变化、多目标协同优化等方面仍存在不足,电梯调度算法的适应性和效率有待进一步提高。
1.3 研究内容与方法
本研究主要内容包括:分析复杂交通模式的特点及其对电梯调度的影响;研究现有电梯调度算法的原理和优缺点;从多目标优化、智能算法改进、结合实时交通数据等方向提出电梯调度算法的优化策略;通过仿真实验对优化后的算法进行性能评估和对比分析 。研究方法上,采用文献研究法梳理相关理论和算法,运用数学建模方法构建电梯调度模型,利用仿真软件进行算法实现和实验验证。
二、复杂交通模式特点及其对电梯调度的影响
2.1 复杂交通模式特点
2.1.1 客流量变化大
在早晚高峰时段,写字楼、住宅楼等建筑内的客流量急剧增加,电梯需求达到峰值;而在非高峰时段,客流量则相对较少 。此外,商场、酒店等场所还会受到节假日、促销活动、大型会议等因素影响,出现客流量的大幅波动 。
2.1.2 流向复杂
复杂交通模式下,乘客的流向不再单一。例如在写字楼中,除了常见的上班高峰期从底层向上层流动、下班高峰期从上层向下层流动外,还可能存在访客从底层前往特定楼层、工作人员在不同楼层间频繁穿梭等情况 。商场中,顾客在各楼层之间购物、就餐、娱乐,流向呈现出多样化和随机性 。
2.1.3 需求多样化
不同乘客对电梯的需求存在差异。部分乘客赶时间,希望尽快到达目的地,对等待时间和运行速度要求较高;而一些携带大件物品或行动不便的乘客,则更注重乘坐的舒适性和安全性 。此外,不同时间段和场景下,乘客的需求也会发生变化。
2.2 对电梯调度的影响
复杂交通模式的这些特点给电梯调度带来了诸多挑战 。客流量的大幅变化使得传统固定模式的调度算法难以适应,容易导致某些时段电梯运力不足,乘客长时间等待,而在其他时段电梯又出现空驶浪费 。流向复杂增加了调度算法准确预测乘客需求的难度,难以合理分配电梯资源 。需求多样化则要求调度算法不仅要考虑运行效率,还需兼顾乘客的个性化需求,进一步提高了调度的复杂性 。
三、现有电梯调度算法分析
3.1 传统调度算法
3.1.1 单轿厢调度算法
单轿厢调度算法是最基本的电梯调度算法,它根据轿厢内乘客的目的楼层和轿厢外召唤信号,按照一定的规则(如顺向优先)进行运行调度 。该算法简单易懂,实现成本低,但在复杂交通模式下,由于缺乏全局优化能力,容易造成乘客等待时间长、电梯运行效率低等问题 。
3.1.2 分区调度算法
分区调度算法将电梯服务的楼层划分为不同的区域,每个区域由特定的电梯负责服务 。这种算法在一定程度上提高了电梯的运行效率,减少了电梯在非服务区域的停靠次数 。然而,当客流量分布不均匀或出现特殊需求时,分区调度算法的灵活性不足,可能导致部分区域电梯繁忙,而其他区域电梯闲置 。
3.2 智能调度算法
3.2.1 遗传算法
遗传算法通过模拟生物进化过程中的选择、交叉和变异操作,对电梯调度方案进行优化 。它能够在较大的解空间中搜索较优解,但算法的收敛速度较慢,且对初始种群的选择和参数设置较为敏感,在实时性要求较高的电梯调度场景中应用存在一定局限性 。
3.2.2 粒子群算法
粒子群算法模拟鸟群觅食或鱼群游动的行为,通过粒子在解空间中的不断迭代更新,寻找最优解 。该算法具有收敛速度快、计算复杂度低等优点,但容易陷入局部最优,在处理复杂交通模式下的电梯调度问题时,难以获得全局最优解 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇