NILMTK安装

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

第二章 NILMTK安装


文章目录

前言

NILMTK(https://github.com/nilmtk/nilmtk)是针对非侵入式负荷监测研究的一款开源工具库,包含了多种算法。根据官方安装教程(https://github.com/nilmtk/nilmtk),经常安装不成功。这里给出一种简单粗暴的方法,就是直接在Github下载NILMTK的文件,放到anaconda安装文件夹lib中的site-packages,然后运行experiment文件,缺少什么库,在安装什么库,百试不爽。

官方安装教程:(https://github.com/nilmtk/nilmtk/blob/master/docs/manual/user_guide/install_user.md)

1.首先安装Anaconda

1. 下载Anaconda

首先进入Anaconda的官网:https://www.anaconda.com/download#downloads,选择Windows下Python(注意:必须选择64位,因为TF不支持Python32位的,官网新版本只有64位了)官网下载程序。

在这里插入图片描述
下载完成后打开,然后就是傻瓜式的安装,一路next即可。注意:笔者在这里只勾选了一个选项。
在这里插入图片描述

2. 设置环境变量

在这里插入图片描述

3. 安装Tensorflow-GPU

3.1 笔者电脑具有GPU显卡RTX3080Ti,所以这里安装tensorflow-gpu所需CUDA和cudnn,首先通过cmd输入nvidia-smi查看显卡驱动版本
在这里插入图片描述
可以看到显卡驱动(Driver Version:536.23)和当前驱动支持的最高CUDA版本(CUDA Version:12.2)。通过这个命令我们就可以确定能下载的最高CUDA版本

3.2 显卡算力与cuda版本关系
当我们下载CUDA时需要根据自身显卡的算力选择合适的CUDA版本,CUDA GPU | NVIDIA 开发者两者的对应关系如下表所示:
在这里插入图片描述

当我们下载CUDA时需要根据自身显卡的算力选择合适的CUDA版本,两者的对应关系(来自维基百科)如下表所示:
在这里插入图片描述
注意:所有版本cudatoolkit下载:
https://developer.nvidia.com/cuda-toolkit-archive

注意:不同cuda版本和驱动的关系
1. CUDA 12.3 Update 1 Release Notes — Release Notes 12.3 documentation (nvidia.com)

3.3 安装CUDA
官网链接:https://developer.nvidia.com。下载完成后,打开下载的驱动。点开Driver comonents,Display Driver这一行,前面显示的是CUDA本身包含的驱动版本是461.33。如果你电脑目前安装的驱动版本号新于CUDA本身自带的驱动版本号,那一定要把这个勾去掉。否则会安装失败。
在这里插入图片描述

打开此路径,查看nvcc.exe
有这个nvcc.exe就说明CUDA安装已成功
在这里插入图片描述

打开此文件夹,查看有没有cuti64_.dll
有这个cuti64_.dll就说明CUPTI已成功
在这里插入图片描述

3.4 安装cudnn
cuDNN官网链接:https://developer.nvidia.com/rdp/cudnn-download。选择cuDNN for CUDA11.3。
在这里插入图片描述

解压cuDNN
在这里插入图片描述

将解压后文件复制到CUDA文件夹下
在这里插入图片描述

查看CUDA环境路径
我的电脑——>属性——>高级系统设置——>环境变量
在这里插入图片描述

最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值